Skip to main content
Log in

A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Mench, Fuel cell engines, Wiley, New Jersey (2008).

    Book  Google Scholar 

  2. J. Larminie and A. Dicks, Fuel cell systems explained, Wiley, England (2003).

    Book  Google Scholar 

  3. Y. Wang, K. S. Chen, J. Mishler, S.C. Cho and X.C. Adroher, Appl. Energy, 88, 981 (2011).

    Article  CAS  Google Scholar 

  4. M.A. Khan, B. Sundén and J. Yuan, J. Power Sources, 196, 7899 (2011).

    Article  CAS  Google Scholar 

  5. G. H. Song and H. Meng, Acta Mech. Sin., 29, 318 (2013).

    Article  CAS  Google Scholar 

  6. H. Ostadi, P. Rama, Y. Liu, R. Chen, X. Zhang and K. Jiang, Microelectron. Eng., 87, 1640 (2010).

    Article  CAS  Google Scholar 

  7. M.S. Ismail, K. J. Hughes, D.B. Ingham, L. Ma and M. Pourkashanian, Appl. Energy, 95, 50 (2012).

    Article  CAS  Google Scholar 

  8. S. Chen and G.D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).

    Article  Google Scholar 

  9. A. S. Joshi, K. N. Grew, A. A. Peracchio and W. K. S. Chiu, J. Power Sources, 164, 631 (2007).

    Article  CAS  Google Scholar 

  10. J. Park, M. Matsubara and X. Li, J. Power Sources, 173, 404 (2007).

    Article  CAS  Google Scholar 

  11. M. Aghajani, M. Farhadi and K. Sedighi, Int. J. Hydrog. Energy, 35, 9306 (2010).

    Article  Google Scholar 

  12. X.D. Niu, T. Munekata, S.A. Hyodo and K. Suga, J. Power Sources, 172, 542 (2007).

    Article  CAS  Google Scholar 

  13. J. Park and X. Li, J. Power Sources, 178, 248 (2008).

    Article  CAS  Google Scholar 

  14. T. Koido, T. Furusawa and K. Moriyama, J. Power Sources, 175, 127 (2008).

    Article  CAS  Google Scholar 

  15. P. P. Mukherjee, C. Y. Wang and Q. Kang, Electrochim. Acta, 54, 6861 (2009).

    Article  CAS  Google Scholar 

  16. L. Hao and P. Cheng, J. Power Sources, 186, 104 (2009).

    Article  CAS  Google Scholar 

  17. L. Hao and P. Cheng, Int. J. Heat Mass Transfer, 55, 133 (2012).

    Article  CAS  Google Scholar 

  18. L. Hao and P. Cheng, J. Power Sources, 195, 3870 (2010).

    Article  CAS  Google Scholar 

  19. Y. Ben Salah, Y. Tabe and T. Chikahisa, J. Power Sources, 199, 85 (2012).

    Article  Google Scholar 

  20. B. Han, J. Yu and H. Meng, J. Power Sources, 202, 175 (2012).

    Article  CAS  Google Scholar 

  21. L. Chen, H. B. Luan, Y. L. He, and W.Q. Tao, Int. J. Therm. Sci., 5, 132 (2012).

    Article  Google Scholar 

  22. L. Chen, H. Luan, Y. Feng, C. Song, Y. L. He and W.Q. Tao, Int. J. Heat Mass Transfer, 55, 3834 (2012).

    Article  CAS  Google Scholar 

  23. L. Chen, Y. L. Feng, C. X. Song, L. Chen, Y. L. He and W.Q. Tao, Int. J. Heat Mass Transfer, 63, 268 (2013).

    Article  CAS  Google Scholar 

  24. M.C. Sukop and D.T. Thorne, Lattice Boltzmann modeling, An introduction for geoscientists and engineers, Springer, Heidelberg (2007).

    Google Scholar 

  25. P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev., 94, 511 (1954).

    Article  CAS  Google Scholar 

  26. A. A. Mohamad, Lattice Boltzmann method, fundamentals and engineering applications with computer codes, Springer, Heidelberg (2011).

    Google Scholar 

  27. S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond numerical mathematics and scientific computation, Clarendon Press, Oxford (2001).

    Google Scholar 

  28. A.K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys. Rev. A, 43, 4320 (1991).

    Article  CAS  Google Scholar 

  29. X. Shan and H. Chen, Phys. Rev. E, 47, 1815 (1993).

    Article  Google Scholar 

  30. M.R. Swift, W.R. Osborn and J.M. Yeomans, Phys. Rev. Lett., 75, 830 (1995).

    Article  CAS  Google Scholar 

  31. X. Shan and G. Doolen, J. Stat. Phys., 81, 379 (1995).

    Article  Google Scholar 

  32. X. Shan and H. Chen, Phys. Rev. E, 47, 3614 (1996).

    Article  Google Scholar 

  33. M.R. Kamali, S. Sundaresan, H. E. A. Van den Akker and J. J. J. Gillissen, Chem. Eng. J., 207–208, 587 (2012).

    Article  Google Scholar 

  34. J.H. VanSant, Conduction heat transfer solutions, Lawrence Livermore National Laboratory, California (1983).

    Book  Google Scholar 

  35. T. V. Nguyen, J. Electrochem. Soc., 143, 103 (1996).

    Article  Google Scholar 

  36. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).

    Article  CAS  Google Scholar 

  37. X. Li, Principles of fuel cells, Taylor and Francis Group, New York (2006).

    Google Scholar 

  38. A. Parthasarathy, S. Srinivasan, A. J. Appleby and C.R. Martin, J. Electrochem. Soc., 139, 2530 (1992).

    Article  CAS  Google Scholar 

  39. T. Berning, D.M. Lu and N. Djilali, J. Power Sources, 106, 284 (2002).

    Article  CAS  Google Scholar 

  40. W. He, J. S. Yi and T. V. Nguyen, AIChE J., 46, 2053 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Akbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaeimanesh, G.R., Akbari, M.H. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method. Korean J. Chem. Eng. 32, 397–405 (2015). https://doi.org/10.1007/s11814-014-0229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0229-6

Keywords

Navigation