Skip to main content

Advertisement

Log in

Recent progress in electrochemical reduction of CO2 into formate and C2 compounds

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Global warming and climate change enhanced by the high atmospheric CO2 concentration have been correlated to the frequency of extreme weather causing a significant amount of property damage and loss of human lives. Among current atmospheric CO2 concentration control strategies, the electrochemical reduction of CO2 (eCO2R) process is a promising technology that can utilize CO2 gas as a feedstock to produce valuable C1 and C2 compounds at room temperature. Since the eCO2R reaction is limited by high activation energy and mass transfer, the choice of the electrocatalyst and the configuration of the CO2 electrolyzer have a significant impact on the activity and selectivity of the eCO2R process. This review discusses current technological advancements of electrocatalytic materials and the design of the gas diffusion electrodes that increase energy efficiency and reduce the mass transfer resistance of the CO2 conversion into C1 with a focus on formate and C2 chemical compounds. A techno-economic analysis is briefly provided, and future and technical challenges of the CO2 conversion at the industrial scale into formate and C2 products are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lindsey, National Oceanic and Atmospheric Administration (2020).

  2. D. Lüthi, M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura and T. F. Stocker, Nature, 453, 379 (2008).

    Article  PubMed  Google Scholar 

  3. E. S. Blake and D. A. Zelinsky, National Oceanic and Atmospheric Administration and National Weather Service (2018).

  4. J. D. Murphy, National Oceanic and Atmospheric Administration (2018).

  5. J. P. Cangialosi, A. S. Latto and R. Berg, National Oceanic and Atmospheric Administration and National Weather Service (2018).

  6. R. J. Pasch, A. B. Penny and R. Berg, National Oceanic and Atmospheric Administration and National Weather Service (2019).

  7. Flooded future: Global vulnerability to sea level rise worse than previously understood. Climate Central (2019).

  8. C40 Cities, 2019. https://www.c40.org/other/the-future-we-don-t-want-staying-afloat-the-urban-response-to-sea-level-rise.

  9. P. A. Marchioro Ystad, O. Bolland and M. Hillestad, Energy Procedia, 23, 33 (2012).

    Article  CAS  Google Scholar 

  10. N. Dave, T. Do, D. Palyman, P. H. M. Feron, S. Xu, S. Gao and L. Liu, Energy Procedia, 4, 1869 (2011).

    Article  Google Scholar 

  11. M. McCann, D. Phan, X. Wang, W. Conway, R. Burns, M. Attalla, G. Puxty and M. Maeder, J. Phys. Chem. A, 113, 5022 (2019).

    Article  Google Scholar 

  12. M. Caplow, J. Am. Chem. Soc., 90, 6795 (1968).

    Article  CAS  Google Scholar 

  13. P. V. Danckwerts, Chem. Eng. Sci., 4, 443 (1979).

    Article  Google Scholar 

  14. F. Rezazadeh, W. F. Gale, G. T. Rochelle and D. Sachde, Int. J. Greenhouse Gas Control, 58, 246 (2017).

    Article  CAS  Google Scholar 

  15. M. Karimi, M. Hillestad and H. F. Svendsen, Energy Procedia, 23, 15 (2012).

    Article  CAS  Google Scholar 

  16. M. Bert, O. Davidson; H. de Coninck, M. Loos and L. Meyer, Cambridge University Press (2005).

  17. M. A. Celia, J. M. Nordbotten, S. Bachu, M. Dobossy and B. Court, Energy Procedia, 1, 2573 (2009).

    Article  CAS  Google Scholar 

  18. J. Song and D. Zhang, Environ. Sci. Technol., 47, 9 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. P. Kaiser, R. B. Unde, C. Kern and A. Jess, Chem. Ing. Tech., 4, 489 (2013).

    Article  Google Scholar 

  20. F. Fisher and H. Tropsch, Brennstoff-Chem, 4, 276 (1923).

    Google Scholar 

  21. R. B. Anderson, Catalysts for the Fischer-Tropsch synthesis: Chap. 2 in catalysis, Reinhold Publishing Corp, New York (1956).

    Google Scholar 

  22. C. Vayenas, Modern aspects of electrochemistry, Springer, New York (2008).

    Book  Google Scholar 

  23. K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Energy Environ. Sci., 5, 7050 (2012).

    Article  CAS  Google Scholar 

  24. X. Min and M. W. Kanan, J. Am. Chem. Soc., 137, 4701 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. R. H. Guo, C. F. Liu, T. C. Wei and C. C. Hu, Electrochem. Commun., 80, 24 (2017).

    Article  CAS  Google Scholar 

  26. M. Valenti, N. P. Prasad, R. Kas, D. Bohra, M. Ma, V. Balasubramanian, L. Chu, S. Gimenez, J. Bisquert, B. Dam and W. A. Smith, ACS Catal., 9, 3527 (2019).

    Article  CAS  Google Scholar 

  27. M. Jouny, W. Luc and F. Jiao, Ind. Eng. Chem. Res., 57, 2165 (2018).

    Article  CAS  Google Scholar 

  28. D. W. Keith, G. Holmes, D. S. Angelo and K. A. Heidel, Joule, 2, 1573 (2018).

    Article  CAS  Google Scholar 

  29. M. Bolinger, J. Seel and R. Dana, Utility-Scale Solar, Empirical Trends in Project Technology, Cost, Performance, and PPA Pricing in the United States - 2019 Edition. Lawrence Berkeley National Laboratory (2019).

  30. B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A. Kenis and R. I. Masel, Science, 334, 643 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. K. Manthiram, B. J. Beberwyck and A. P. Alivisatos, J. Am. Chem. Soc., 136, 13319 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. D. Ren, B. S. Ang and B. S. Yeo, ACS Catal., 6, 8239 (2016).

    Article  CAS  Google Scholar 

  33. C. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. Pelayo García de Arquer, A. Kiani, J. P. Edwards, P. D. Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton and E. H. Sargent, Science, 360, 783 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Industry - Ethylene and Other Olefins. Dialogue on European Decarbonisation Strategies.

  35. B. A. Zhang, T. Ozel, J. S. Elias, C. Costentin and D. G. Nocera, ACS Cent. Sci., 5, 1097 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. R. Singh, E. L. Clarkab and A. T. Bell, Phys. Chem. Chem. Phys., 17, 18924 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. L. C. Weng, A. T. Bell and A. Z. Weber, Phys. Chem. Chem. Phys., 20, 16973 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. A. Löwe, C. Rieg, T. Hierlemann, N. Salas, D. Kopljar, N. Wagner and I. E. Klemm, ChemElectroChem., 6, 4497 (2019).

    Article  Google Scholar 

  39. Z. Xing, L. Hu, D. S. Ripatti, X. Hu and X. Feng, Nat. Commun., 136, 1 (2021).

    Google Scholar 

  40. M. Azuma, K. Hashimoto, M. Watanabe and T. Sakata, J. Electrochem. Soc., 137, 1172 (1990).

    Article  Google Scholar 

  41. R. Hegner, L. F. M. Rosa and F. Harnisch, Appl. Catal., B, 238, 546 (2018).

    Article  CAS  Google Scholar 

  42. B. Bohlen, D. Wastl, J. Radomski, V. Sieber and L. Vieir, Electrochem. Commun., 110, 106597 (2020).

    Article  CAS  Google Scholar 

  43. B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J. M. Leger and K. B. Kokoh, J. Appl. Electrochem., 39, 227 (2009).

    Article  CAS  Google Scholar 

  44. W. Lv, R. Zhang, P. Gao and L. Lei, J. Power Sources, 253, 276 (2014).

    Article  CAS  Google Scholar 

  45. E. Bertin, S. Garbarino, C. Roy, S. Kazemi and D. Guay, J. CO2 Util., 19, 276 (2017).

    Article  CAS  Google Scholar 

  46. Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim. Acta, 39, 1833 (1994).

    Article  CAS  Google Scholar 

  47. J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov and T. F. Jaramillo, ACS Catal, 7, 4822 (2017).

    Article  CAS  Google Scholar 

  48. T. S. Safaei, A. Mepham, X. Zheng, Y. Pang, C. T. Dinh, M. Liu, D. Sinton, S. O. Kelley and E. H. Sargent, Nano Lett., 16, 7224 (2016).

    Article  Google Scholar 

  49. N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li and Y. Li, Nat. Commun., 9, 1320 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. W. Chen, J. Ji, X. Feng, X. Duan, G. Qian, P. Li, X. Zhou, D. Chen and W. Yuan, J. Am. Chem. Soc., 136, 167369 (2014).

    Google Scholar 

  51. F. J. Perez-Alonso, D. N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I. E. L. Stephens, J. H. Nielsen and I. Chorkendorff, Angew. Chem., 51, 4641 (2012).

    Article  CAS  Google Scholar 

  52. B. Ávila-Bolívar, L. García-Cruz, V. Montiel and J. Solla-Gullón, Molecules, 24, 2032 (2019).

    Article  PubMed Central  Google Scholar 

  53. W. Luo, W. Xie, M. Li, J. Zhang and A. Züttel, J. Mater. Chem. A, 7, 4505 (2019).

    Article  CAS  Google Scholar 

  54. Y. Qiu, J. Du, C. Dai, W. Dong and C. Tao, J. Electrochem. Soc., 165, 594 (2018).

    Article  Google Scholar 

  55. A. D. Castillo, M. Alvarez-Guerra and A. Irabien, AIChE J., 60, 3557 (2014).

    Article  Google Scholar 

  56. A. D. Castillo, M. Alvarez-Guerra J. Solla-Gullón, A, Sáez, V. Montiel and A. Irabien, Appl. Energy, 157, 165 (2015).

    Article  Google Scholar 

  57. A. D. Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel and A. Irabien, J. CO2 Util., 18, 222 (2017).

    Article  Google Scholar 

  58. W. Lee, Y. E. Kim, M. H. Youn, S. K. Jeong and K. T. Park, Angew. Chem., Int. Ed., 57, 6883 (2018).

    Article  CAS  Google Scholar 

  59. B. I. Podlovchenko, E. A. Kolyadko and S. Lu, J. Electroanal. Chem., 373, 185 (1994).

    Article  CAS  Google Scholar 

  60. C. Gabrielli, P. P. Grand, A. Lasia and H. Perrota, J. Electrochem. Soc., 115, 1937 (2016).

    Google Scholar 

  61. C. W. Lee, N. H. Cho, K. T. Nam, Y. J. Hwang and B. K. Min, Nat. Commun., 10, 3919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. B. Hammer and J. K. Nørskov, Adv. Catal., 45, 71 (2000).

    CAS  Google Scholar 

  63. R. Kortlever, I. Peters, S. Koper and M. T. M. Koper, ACS Catal., 5, 3916 (2015).

    Article  CAS  Google Scholar 

  64. B. Jiang, X. G. Zhang, K. Jiang, D. Y. Wu and W. B. Cai, J. Am. Chem. Soc., 140, 2880 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. W. J. Wang, S. Hwang, T. Kim, S. Ha and L. Scudiero, Electrochim. Acta, 387, 138531 (2021).

    Article  CAS  Google Scholar 

  66. R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo and M. T. M. Koper, J. Phys. Chem. Lett., 6, 4073 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, Energy Environ. Sci., 3, 1311 (2010).

    Article  CAS  Google Scholar 

  68. K. J. P. Schoute, Y. Kwo, C. J. M. van der Ham, H. Z. Qin and M. T. M. Koper, Chem. Sci. J., 2, 1902 (2011).

    Article  Google Scholar 

  69. Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 85, 2309 (1989).

    Article  CAS  Google Scholar 

  70. A. Bagger, W. Ju, A. S. Varela, P. Strasser and J. Rossmeisl, ChemPhysChem., 18, 3266 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. T. Cheng, H. Xiao and W. A. Goddard III, J. Phys. Chem. Lett., 6, 4767 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Y. Lum, T. Cheng, W. A. Goddard III and J. W. Ager, J. Am. Chem. Soc., 140, 9337 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. D. Raciti, M. Mao, J. H. Park and C. Wang, J. Electrochem. Soc., 10, 799 (2018).

    Article  Google Scholar 

  74. H. Xiao, T. Cheng, W. A. Goddard III and R. Sundararaman, J. Am. Chem. Soc., 138, 483 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. B. Sandberg, M. Tang, K. S. Brown, H. Peng, S. Ringe, C. Hahn, T. F. Jaramillo, J. K. Nørskov and K. Chan, Nat. Commun., 10, 32 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H. R. Molly Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima and P. J. A. Kenis, ACS Energy Lett., 3, 193 (2018).

    Article  CAS  Google Scholar 

  77. M. E. Leonard, L. E. Clarke, A. Forner-Cuenca, S. M. Brown and F. R. Brushett, ChemSusChem., 13, 400 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. D. W. DeWulf, T. Jin and A. J. Bard, J. Electrochem. Soc., 136, 1686 (1989).

    Article  CAS  Google Scholar 

  79. Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys. Chem. B, 101, 7075 (1997).

    Article  CAS  Google Scholar 

  80. Z. Liu, R. I. Masel, Q. Chen, R. Kutz, H. Yang, K. Lewinski, M. Kaplun, S. Luopa and D. R. Lutz, J. CO2 Util., 15, 50 (2016).

    Article  Google Scholar 

  81. R. B. Kutz, Q. Chen, H. Yang, S. D. Sajjad, Z. Liu and R. I. Masel, Energy Technol., 5, 929 (2017).

    Article  CAS  Google Scholar 

  82. T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu and H. Wang, Joule, 3, 265 (2019).

    Article  CAS  Google Scholar 

  83. Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong, M. Huai, L. Xiao, G. Wang, J. Lu and L. Zhuang, Energy Environ. Sci., 12, 2455 (2019).

    Article  CAS  Google Scholar 

  84. L. Han, W. Zhou and C. Xiang, Energy Lett., 3, 855 (2018).

    Article  CAS  Google Scholar 

  85. M. Jouny, W. Luc and F. Jiao, Nat. Catal, 1, 748 (2018).

    Article  CAS  Google Scholar 

  86. W. Luc, X. Fu, J. Shi, J. J. Lv, M. Jouny, B. H. Ko, Y. Xu, Q. Tu, X. Hu, J. Wu, Q. Yue, Y. Liu, F. Jiao and Y. Kang, Nat. Catal, 2, 423 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the O.H. Reaugh Laboratory at Washington State University for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louis Scudiero or Su Ha.

Additional information

Louis Scudiero obtained his B.S. and M.S. degrees in Physics in 1993 and 1995 from Washington State University where in 2002 he received his Ph.D. degree in Materials Science. He joined Washington State University in 2003 where he is currently a career track professor in the department of Chemistry and in the Materials Science and Engineering Program. His field of expertise is material characterization using spectroscopic and microscopic techniques. He has published in diverse research areas from developing materials for solar cells, air filtering, Li-ion batteries and fuel cells. His research is currently focused on nanomaterials for alternative energy such as electrochemical CO2 reduction, direct formic acid and hydrogen fuel cells.

Su Ha obtained B.S. degree in Chemical Engineering from the North Carolina State University in 2000. He received M.S. and Ph.D. degrees in Chemical Engineering from the University of Illinois at Urbana-Champaign. He joined Washington State University in 2005 and is currently a professor in the Gene and Linda Voiland School of Chemical Engineering and Bioengineering at Washington State University. He is also a director for its O.H. Reaugh Laboratory for Oil and Gas Processing Research. He has published over 70 publications in the research areas of energy generations from alternative fuels. His researches have been cited over 5,500 times with an h-index of 30. In 2014, he was named as Highly Cited Researcher by Thomson Reuters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.J., Scudiero, L. & Ha, S. Recent progress in electrochemical reduction of CO2 into formate and C2 compounds. Korean J. Chem. Eng. 39, 461–474 (2022). https://doi.org/10.1007/s11814-021-1009-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1009-8

Keywords

Navigation