Skip to main content
Log in

Microwave-assisted production of biodiesel using metal-organic framework Mg3(bdc)3(H2O)2

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Metal-organic framework Mg-MOF: (Mg3(bdc)3(H2O)2) was synthesized via microwave (MW) irradiation, then used in the microwave-assisted production of biodiesel from oleic acid. Microwave irradiation was used as an alternative ecofriendly route to conventional heating. The synthesized Mg-MOF sample was characterized by XRD, TGA, FT-IR, nitrogen adsorption/desorption and TEM techniques. The catalytic activity of Mg-MOF in the microwave- assisted production of Biodiesel from oleic acid and methanol was studied. Vacancies created upon removal of linkers, metal clusters composed MOF frameworks, small pore size and its surface area are responsible for the high catalytic activity of the prepared Mg-MOF. The results indicated that Mg-MOF catalyst showed high conversion percentage (97%) that followed pseudo-first order, under mild reaction conditions (MW power: 150watts, reaction time: 8min, molar ratio of oleic acid to methanol: 1: 15 and catalyst amount 0.15 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. J. Bart, N. Palmeri and S. Cavallaro, Biodiesel science and technology, 1st Ed., from soil to oil, Woodhead Publishing Ltd (2010).

    Book  Google Scholar 

  2. S. R. Sinsel, R. L. Riemke and V. H. Hoffmann, Renew. Energy, 145, 2271 (2020).

    Article  Google Scholar 

  3. H. M. Wee, W. H. Yang, C. W. Chou and M. V. Padilan, Renew. Sust. Energy Rev., 16, 5451 (2012).

    Article  Google Scholar 

  4. E. A. Ateq, Biodiesel viscosity and flash point determination, Master’s thesis, An-Najah National University, Nablus, Palestine (2015).

    Google Scholar 

  5. M. Cea, M. E. González, M. Abarzúa and R. Navia, J. Environ. Manage., 242, 171 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. J. H. Lee, S.B. Kim, H.Y. Yoo, J.H. Lee, S.O. Han, C. Park and S. W. Kim, Korean J. Chem. Eng., 30, 1335 (2013).

    Article  CAS  Google Scholar 

  7. L. Fjerbaek, V. Christensen and B. Norddahl, Biotechnol. Bioeng., 102, 1298 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Y. Yeşiloğlu, Process Biochem., 40, 2155 (2005).

    Article  CAS  Google Scholar 

  9. A. S. Silitonga, H. H. Masjuki, T. M. I. Mahlia, H. C. Ong, A. E. Atabani and W. T. Chong, Renew. Sust. Energy Rev., 24, 514 (2013).

    Article  CAS  Google Scholar 

  10. B. R. Vahid and M. Haghighi, Energy Convers. Manage., 126, 362 (2016).

    Article  CAS  Google Scholar 

  11. M. Kim, C. DiMaggio, S. O. Salley and K. Y. S. Ng, Bioresour. Technol., 118, 37 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. H. Wan, C. Chen, Z. Wu, Y. Que, Y. Feng, W. Wang, L. Wang, G. Guan and X. Liu, ChemCatChem., 7, 441 (2015).

    Article  CAS  Google Scholar 

  13. B. Aghabarari and N. Dorostkar, J. Taiwan Inst. Chem. Eng., 45, 1468 (2014).

    Article  CAS  Google Scholar 

  14. I. Istadi, D. D. Anggoro, L. Buchori, D.A. Rahmawati and D. Intaningrum, Proc. Environ. Sci., 23, 385 (2015).

    Article  CAS  Google Scholar 

  15. S. Soltani, U. Rashid, R. Yunus and Y. H. Taufiq-Yap, Fuel, 178, 253 (2016).

    Article  CAS  Google Scholar 

  16. J. A. Kaduk, Acta Cryst. Sec. B, 58, 815 (2002).

    Article  CAS  Google Scholar 

  17. J. A. Rood, B. C. Noll and K. W. Henderson, Main Group Chem., 5, 21 (2006).

    Article  CAS  Google Scholar 

  18. R. P. Davies, R. J. Less, P. D. Lickiss and A. J. P. White, Dalton Trans., 24, 2528 (2007).

    Article  CAS  Google Scholar 

  19. C. A. Williams, A. J. Blake, C. Wilson, P. Hubberstey and M. Schröder, Cryst. Growth Des., 8, 911 (2008).

    Article  CAS  Google Scholar 

  20. P. D. C. Dietzel, R. Blom and H. Fjellvåg, Eur. J. Inorg. Chem., 23, 3624 (2008).

    Article  CAS  Google Scholar 

  21. S. Mendiratta, M. Usman, T.W. Tseng, T. T. Luo, S. F. Lee, L. Zhao, M. K. Wu, M. M. Lee, S. S. Sun, Y. C. Lin and K. L. Lu, Eur. J. Inorg. Chem., 10, 1669 (2015).

    Article  CAS  Google Scholar 

  22. A. Biswas, M. B. Kim, S.Y. Kim, T.U. Yoon, S. I. Kim and Y. S. Bae, RSC Adv., 6, 81485 (2016).

    Article  CAS  Google Scholar 

  23. Z. Hasan, J.W. Jun and S. H. Jhung, Chem. Eng. J., 278, 265 (2015).

    Article  CAS  Google Scholar 

  24. A. Nikseresht, A. Daniyali, M. Ali-Mohammadi, A. Afzalinia and A. Mirzaie, Ultrason. Sonochem., 37, 203 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. H. M.A. Hassan, M. A. Betiha, S. K. Mohamed, E. A. El-Sharkawy and E. A. Ahmed, Appl. Surf. Sci., 412, 394 (2017).

    Article  CAS  Google Scholar 

  26. N. R. Khan and V. K. Rathod, Process Biochem., 75, 89 (2018).

    Article  CAS  Google Scholar 

  27. R. K. Singh, R. Kumar, D. P. Singh, R. Savu and S. A. Moshkalev, Mater. Today Chem., 12, 282 (2019).

    Article  CAS  Google Scholar 

  28. L. Y. Meng, B. Wang, M. G. Ma and K. L. Lin, Mater. Today Chem., 1-2, 63 (2016).

    Article  Google Scholar 

  29. F. Mavandadi and Å. Pilotti, Drug Discovery Today, 11, 165 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. S. Chellappan, K. Aparna, C. Chingakham, V. Sajith and V. Nair, Fuel, 246, 268 (2019).

    Article  CAS  Google Scholar 

  31. A. Sharma, P. Kodgire, S. S. Kachhwaha, H. B. Raghavendra and K. Thakkar, Mater. Today-Proc., 5, 23064 (2018).

    Article  CAS  Google Scholar 

  32. J. J. Lin and Y.W. Chen, J. Taiwan Inst. Chem. E., 75, 43 (2017).

    Article  CAS  Google Scholar 

  33. L. A. Jermolovicius, L. C. M. Cantagesso, R. B. do Nascimento, E. R. de Castro, E. V. S. Pouzada and J.T. Senise, Chem. Eng. Process, 122, 380 (2017).

    Article  CAS  Google Scholar 

  34. S. A. El Sherbiny, A. A. Refaat and S. T. El Sheltawy, J. Adv. Res., 1, 309 (2010).

    Article  Google Scholar 

  35. F. Ketzer, D. Celante and F. de Castilhos, Micropor. Mesopor. Mater., 291, 109704 (2020).

    Article  CAS  Google Scholar 

  36. Y. T. Wang, Z. Fang and F. Zhang, Catal. Today, 319, 172 (2019).

    Article  CAS  Google Scholar 

  37. C. Cannilla, G. Bonura, F. Costa and F. Frusteri, Appl. Catal. A, 566, 121 (2018).

    Article  CAS  Google Scholar 

  38. Z. T. Alismaeel, A. S. Abbas, T. M. Albayati and A. M. Doyle, Fuel, 234, 170 (2018).

    Article  CAS  Google Scholar 

  39. A. Hykkerud and J. M. Marchetti, Biomass Bioenergy, 95, 340 (2016).

    Article  CAS  Google Scholar 

  40. H. M. Abd El Salam and T. Zaki, Inorg. Chim. Acta, 471, 203 (2018).

    Article  CAS  Google Scholar 

  41. Z. Zhou, L. Mei, C. Ma, F. Xu, J. Xiao, Q. Xia and Z. Li, Chem. Eng. Sci., 147, 109 (2016).

    Article  CAS  Google Scholar 

  42. A. L. Cardoso, S. C. G. Neves and M. J. da Silva, Energies, 1, 79 (2008).

    Article  CAS  Google Scholar 

  43. O. Ilgen, Fuel Process. Technol., 124, 134 (2014).

    Article  CAS  Google Scholar 

  44. P. Lv, J. Wang, S. Xing, Z. Li, P. Fan and Z. Wang, Comparison between heterogeneous acid and base catalyzed biodiesel production: catalytic mechanism and performance, 8th international symposium on acid base catalysis, 7–10 May 2017, Rio de Janeiro, Brazil.

    Google Scholar 

  45. A. M. El-Nahas, T. A. Salaheldin, T. Zaki, H. H. El-Maghrabi, A.M. Marie, S.M. Morsy and N. K. Allam, Chem. Eng. J., 322, 167 (2017).

    Article  CAS  Google Scholar 

  46. S. Gan, H. K. Ng, P. H. Chan and F. L. Leong, Fuel Process. Technol., 102, 67 (2012).

    Article  CAS  Google Scholar 

  47. J. G. Vitillo, RSC Adv., 5, 36192 (2015).

    Article  CAS  Google Scholar 

  48. M. Shaban, M.R. Abukhadra, R. Hosny, A.M. Rabie, S.A. Ahmed and N. A. Negm, J. Mol. Liq., 279, 224 (2019).

    Article  CAS  Google Scholar 

  49. F. G. Cirujano, A. Corma and F. X. Llabrés i Xamena, Catal. Today, 257, 213 (2015).

    Article  CAS  Google Scholar 

  50. R. Peña-Rodríguez, E. Márquez-López, A. Guerrero, L. E. Chiñas, D. F. Hernández-González and J. M. Rivera, Mater Lett., 217, 117 (2018).

    Article  CAS  Google Scholar 

  51. M. Han, Y. Li, Z. Gu, H. Shi, C. Chen, Q. Wang, H. Wan and G. Guan, Colloids Surf. A, 553, 593 (2018).

    Article  CAS  Google Scholar 

  52. W. Xie and F. Wan, Chem. Eng. J., 365, 40 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heba Hassan El-Maghrbi or Fouad Zahran.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelSalam, H., El-Maghrbi, H.H., Zahran, F. et al. Microwave-assisted production of biodiesel using metal-organic framework Mg3(bdc)3(H2O)2. Korean J. Chem. Eng. 37, 670–676 (2020). https://doi.org/10.1007/s11814-020-0491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0491-8

Keywords

Navigation