Skip to main content
Log in

Antifungal mechanisms of ε-poly-L-Lysine with different molecular weights on Saccharomyces cerevisiae

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

ε-Poly-L-lysine (ε-PL) is a natural antimicrobial cationic peptide. Antimicrobial activity of ε-PL is closely related to its molecular weight (Mw). However, the antimicrobial mechanisms of ε-PL with different Mws are still vague. In this study, Saccharomyces cerevisiae was used as the model system to analyze the mechanism from these three aspects: cell wall, cell membrane, and metabolism. The results showed that high-Mw ε-PL (1-3 kDa and >3 kDa) and commercial ε-PL product caused cell wall lesions, and significantly improved cell membrane permeability compared to low-Mw ε-PL (<1 kDa), resulting in leaking of the protoplasm through the pores and cell death. Furthermore, metabolomics analysis showed that high-Mw ε-PL (1-3 kDa and >3 kDa) and product displayed higher inhibition effect on the glycolysis pathway and tricarboxylic cycle than that of low-Mw ε-PL (<1 kDa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gould and N. Russell, Food preservatives, Springer (2003).

    Google Scholar 

  2. M. L. Ritchie and T. N. Romanuk, Plos One, 7, e34938 (2012).

    Article  CAS  Google Scholar 

  3. C. Gao, Y. Tao, D. Jie, H. Fang, H. Luo and Y. Wan, Food Hydrocolloids, 36, 204 (2014).

    Article  CAS  Google Scholar 

  4. Z. Xu, Z. Xu, X. Feng, D. Xu, J. Liang and H. Xu, Appl. Microbiol. Biotechnol., 100, 15 (2016).

    Google Scholar 

  5. J. Y. Miao, J. L. Zhou, G. Liu, F. L. Chen, Y. Chen, X. Gao, W. Dixon, M. Song, H. Xiao and Y. Cao, Food Control, 59, 609 (2016).

    Article  CAS  Google Scholar 

  6. M. Hyldgaard, T. Mygind, B. S. Vad, M. Stenvang, D. E. Otzen and R. L. Meyer, Appl. Environ. Microbiol., 80, 7759 (2014).

    Article  CAS  Google Scholar 

  7. R. Su, T. Li, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang and H. Zhang, J. Sci. Food Agric., 99, 6 (2019).

    Article  CAS  Google Scholar 

  8. S. Shima, H. Matsuoka, T. Iwamoto and H. Sakai, J. Antibiot., 37, 11 (1984).

    Article  Google Scholar 

  9. M. Takehara, A. Hibino, M. Saimura and H. Hirohara, Biotechnol. Lett., 32, 9 (2010).

    Article  CAS  Google Scholar 

  10. M. Wei, Y. Ge, C. Li, Y. Chen, W. Wang, B. Duan and X. Li, Physiol. Mol. Plant Pathol., 103, 23 (2018).

    Article  CAS  Google Scholar 

  11. R. Ye, H. Xu, C. Wan, S. Peng, L. Wang, H. Xu, Z. P. Aguilar, Y. Xiong, Z. Zeng and H. Wei, Biochem. Biophys. Res. Commun., 439, 1 (2013).

    Article  CAS  Google Scholar 

  12. K. Liu, X. Zhou and M. Fu, Postharvest Biol. Tec., 123, 94 (2017).

    Article  CAS  Google Scholar 

  13. H. Li, C. He, G. Li, Z. Zhang, B. Li and S. Tian, Postharvest Biol. Tec., 147, 1 (2019).

    Article  CAS  Google Scholar 

  14. E. Wang, Y. Li, B. L. Maguy, Z. Lou, H. Wang, W. Zhao and X. Chen, Food Chem., 294, 533 (2019).

    Article  CAS  Google Scholar 

  15. E. C. I. Veerman, M. Valentijn-Benz, W. van't Hof, K. Nazmi, J. van Marle and A. V. N. Amerongen, Biol. Chem., 391, 1 (2010).

    Article  Google Scholar 

  16. S. Zhang, J. Xiong, W. Lou, Z. Ning, D. Zhang and J. Yang, Food Control, 98, 113 (2019).

    Article  CAS  Google Scholar 

  17. M. Z. Ding, X. Zhou and Y. Yuan, Metabolomics, 6, 1 (2010).

    Article  CAS  Google Scholar 

  18. I. L. Shih, M. H. Shen and Y. T. J. B. T. Van, Bioresour. Technol., 97, 9 (2006)

    Article  CAS  Google Scholar 

  19. R. Song, R. B. Wei, H. Y. Luo and D. F. J. M. Wang, Molecules, 17, 3 (2012).

    Google Scholar 

  20. F. Guilhelmelli, N. Vilela, P. Albuquerque, L. S. Derengowski, I. Silva-Pereira and C. Kyaw, Front Microbiol., 4, 353 (2013).

    Article  Google Scholar 

  21. M. R. Yeaman and N. Y. Yount, Pharmacol. Rev., 55, 1 (2003).

    Article  CAS  Google Scholar 

  22. A. S. Ladokhin and S. H. J. B.-B. White, BBA-Biomembranes, 1514, 2 (2001).

    Article  Google Scholar 

  23. V. Teixeira, M. J. Feio and M. Bastos, Prog. Lipid Res., 51, 2 (2012).

    Article  CAS  Google Scholar 

  24. K. A. Brogden, Nat. Rev. Microbiol., 3, 3 (2005).

    Article  Google Scholar 

  25. M. A. Singer and S. Lindquist, Trends in Biotechnol., 16, 11 (1998).

    Article  Google Scholar 

  26. S. C. Sharma, FEMS Microbiol. Lett., 152, 11 (1997).

    Article  CAS  Google Scholar 

  27. J. L. Parrou, M. A. Teste and J. Francois, J. Microbiol., 143, 6 (1997).

    Google Scholar 

  28. C. Godon, G. Lagniel, J. Lee, J. M. Buhler, S. Kieffer, R. Perrot, H. Boucherie, M. B. Toledano and J. Labarre, J. Biol. Chem., 273, 35 (1998).

    Article  Google Scholar 

  29. V. Natera, L. Sobrevals, A. Fabra and S. Castro, Curr. Microbiol., 53, 6 (2006).

    Article  CAS  Google Scholar 

  30. S. Yap and S. J. A. O. M. Lim, Arch Microbiol., 135, 3 (1983).

    Article  Google Scholar 

  31. H. Takagi, F. Iwamoto and S. Nakamori, Appl. Microbiol. Biot., 47, 4 (1997).

    Article  Google Scholar 

  32. S. Kubota, I. Takeo, K. Kume, M. Kanai, A. Shitamukai, M. Mizunuma, T. Miyakawa, H. Shimoi, H. Iefuji and D. Hirata, Biosci. Biotechnol. Biochem., 68, 4 (2004).

    Google Scholar 

  33. H. Li, M. Ma, S. Luo, R. Zhang, P. Han and W. Hu, Int. J. Biochem. Cell B., 44, 7 (2012).

    Google Scholar 

  34. M. Ding, X. Wang, Y. Yang and Y. Yuan, OMICS: J. Integrative Biol., 15, 10 (2011).

    Article  CAS  Google Scholar 

  35. A. Barsch, H. G. Carvalho, J. V. Cullimore and K. Niehaus, J. Biotechnol., 127, 1 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Program of China (Project 2018YFD0400205), the Tianjin Municipal Commission of Education Research Plan (2017KJ011), Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control (ZXKF20180101), and Tianjin Natural Science Foundation (18JCQNJC78600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiandong Cui or Shiru Jia.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Wang, F., Tan, Z. et al. Antifungal mechanisms of ε-poly-L-Lysine with different molecular weights on Saccharomyces cerevisiae. Korean J. Chem. Eng. 37, 482–492 (2020). https://doi.org/10.1007/s11814-019-0466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0466-9

Keywords

Navigation