Skip to main content

Advertisement

Log in

A preferential CO2 separation using binary phases membrane consisting of Pebax®1657 and [Omim][PF6] ionic liquid

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Pebax®1657 and [Omim][PF6] ionic liquid (IL) were used to fabricate a blend membrane and applied for CO2 separation. The changes upon adding ionic liquid into the polymer matrix as well as the membrane characteristics were studied through SEM, FTIR, DSC and TGA analysis. The obtained gas permeation results indicated that the CO2 permeability in all membranes was much higher than the other studied gases. CO2 permeability of Pebax containing 8 wt% IL increased from 82.3 Barrer up to 125.6 Barrer at a pressure of 2 bar, which showed a 53% increment compared to the neat Pebax membrane. Furthermore, as the [Omim][PF6] loading within the polymer matrix was increased, the CO2/CH4 and CO2/N2 selectivities improved. In addition, the permeability and selectivity of gases was enhanced as the feed pressure increased. Upon increasing feed pressure to 10 bar, the CO2 permeability of Pebax containing 8 wt% IL reached 185.3 Barrer, which was approximately 48% higher than the permeability at a pressure of 2 bar. Moreover, the selectivity of CO2/CH4 and CO2/N2 for the Pebax/8wt% IL membrane at pressure of 2 bar was 15.3 and 46.5, respectively, which improved to 19.7 and 59.8 as the pressure increased to 10 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lee, Z. Jawad, A. Ahmad and H. Chua, Process Saf. Environ., 117, 159 (2018).

    Article  CAS  Google Scholar 

  2. M. H. Nematollahi, S. Babaei and R. Abedini, Korean J. Chem. Eng., 36, 763 (2019).

    Article  CAS  Google Scholar 

  3. I. Shakeel, A. Hussain and S. Farrukh, J. Polym. Environ., 27, 1449 (2019).

    Article  CAS  Google Scholar 

  4. R. Heck, M. S. Qahtani, G. O. Yahaya, I. Tanis, D. Brown, A. A. Bahamdan, A. W. Ameen, M. Vaidya, J.-P. Ballaguet and R. Alhajry, Sep. Purif. Technol., 173, 183 (2017).

    Article  CAS  Google Scholar 

  5. R. Abedini, M. Omidkhah and F. Dorosti, RSC Adv., 4, 36522 (2014).

    Article  CAS  Google Scholar 

  6. A. D. Kiadehi, A. Rahimpour, M. Jahanshahi and A. A. Ghoreyshi, J. Ind. Eng. Chem., 22, 199 (2015).

    Article  Google Scholar 

  7. E. Nezhadmoghadam, M. Pouafshari Chenar, M. Omidkhah, A. Nezhadmoghadam and R. Abedini, Korean J. Chem. Eng., 35, 526 (2019).

    Article  Google Scholar 

  8. H. R. Mahdavi, N. Azizi, M. Arzani and T. Mohammadi, J. Nat. Gas. Sci. Eng., 46, 275 (2017).

    Article  CAS  Google Scholar 

  9. A. Raza, S. Farrukh and A. Hussain, J. Polym. Environ., 25, 46 (2017).

    Article  CAS  Google Scholar 

  10. L. Hao, P. Li, T. Yang and T.-S. Chung, J. Membr. Sci., 436, 221 (2013).

    Article  CAS  Google Scholar 

  11. F. Dorosti, M. Omidkhah and R. Abedini, Chem. Eng. Res. Des., 92, 2439 (2014).

    Article  CAS  Google Scholar 

  12. H. Rabiee, A. Ghadimi and T. Mohammadi, J. Membr. Sci., 476, 286 (2015).

    Article  CAS  Google Scholar 

  13. M. Vatani, A. Raisi and G. Pazuki, J. Mol. Liq., 277, 471 (2019).

    Article  CAS  Google Scholar 

  14. P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková and G. Clarizia, Sep. Purif. Technol., 97, 73 (2012).

    Article  CAS  Google Scholar 

  15. E. Ghasemi Estahbanati, M. Omidkhah and A. Ebadi Amooghin, ACS. Appl. Mater. Inter., 9, 10094 (2017).

    Article  CAS  Google Scholar 

  16. M. Mozafari, R. Abedini and A. Rahimpour, J. Mater. Chem. A., 6, 12380 (2018).

    Article  CAS  Google Scholar 

  17. H. Hosseinzadeh Beiragh, M. Omidkhah, R. Abedini, T. Khosravi and S. Pakseresht, Asia-Pac. J. Chem. Eng., 11, 522 (2016).

    Article  CAS  Google Scholar 

  18. M. Pazirofteh, M. Dehghani, S. Niazi, A. H. Mohammadi and M. Asghari, J. Mol. Liq., 241, 646 (2017).

    Article  CAS  Google Scholar 

  19. T.-S. Chung, L. Y. Jiang, Y. Li and S. Kulprathipanja, Prog. Poly. Sci., 32, 483 (2007).

    Article  CAS  Google Scholar 

  20. B. Sasikumar, G. Arthanareeswaran and A. Ismail, J. Mol. Liq., 266, 330 (2018).

    Article  CAS  Google Scholar 

  21. Y. Zhao, M. Pan, X. Kang, W. Tu, H. Gao and X. Zhang, Chem. Eng. Sci., 189, 43 (2018).

    Article  CAS  Google Scholar 

  22. M. Li, X. Zhang, S. Zeng, H. Gao, J. Deng, Q. Yang and S. Zhang, RSC Adv., 7, 6422 (2017).

    Article  CAS  Google Scholar 

  23. A. Car, C. Stropnik, W. Yave and K.-V. Peinemann, Sep. Purif. Technol., 62, 110 (2008).

    Article  CAS  Google Scholar 

  24. M. Bhattacharya and M. K. Mandal, J. Clean. Prod., 156, 174 (2017).

    Article  CAS  Google Scholar 

  25. W. Fam, J. Mansouri, H. Li and V. Chen, J. Membr. Sci., 537, 54 (2017).

    Article  CAS  Google Scholar 

  26. E. G. Estahbanati, M. Omidkhah and A. E. Amooghin, J. Ind. Eng. Chem., 51, 77 (2017).

    Article  Google Scholar 

  27. M. Bhattacharya and M. K. Mandal, J. Clean. Prod., 156, 174 (2017).

    Article  CAS  Google Scholar 

  28. R. Lin, L. Ge, H. Diao, V. Rudolph and Z. Zhu, ACS Appl. Mater. Interfaces, 46, 32041 (2016).

    Article  Google Scholar 

  29. K. V. Otvagina, A. E. Mochalova, T. S. Sazanova, A. N. Petukhov, A. A. Moskvichev, A. V. Vorotyntsev, C. A. M. Afonso and I. V. Vorotyntsev, Membranes, 6, 31 (2016).

    Article  Google Scholar 

  30. N. Azizi, T. Mohammadi and R. M. Behbahani, J. Energy Chem., 26, 454 (2017).

    Article  Google Scholar 

  31. R. Abedini, M. Omidkhah and F. Dorosti, Int. J. Hydrogen Energy, 39, 7897 (2014).

    Article  CAS  Google Scholar 

  32. M. Jamshidi, V. Pirouzfar, R. Abedini and M. Z. Pedram, Korean J. Chem. Eng., 34, 829 (2017).

    Article  CAS  Google Scholar 

  33. G. Huang, A. P. Isfahani, A. Muchtar, K. Sakurai, B. B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah and B. Ghalei, J. Membr. Sci., 565, 370 (2018).

    Article  CAS  Google Scholar 

  34. Y.-J. Fu, C.-C. Hu, H.-z. Qui, K.-R. Lee and J.-Y. Lai, Sep. Purif. Technol., 62, 175 (2008).

    Article  CAS  Google Scholar 

  35. C. Joly, D. Le Cerf, C. Chappey, D. Langevin and G. Muller, Sep. Purif. Technol., 16, 47 (1999).

    Article  CAS  Google Scholar 

  36. A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari, J. Membr. Sci., 524, 652 (2017).

    Article  CAS  Google Scholar 

  37. R. Nasir, N. N. R. Ahmad, H. Mukhtar and D. F. Mohshim, J. Environ. Chem. Eng., 6, 2363 (2018).

    Article  CAS  Google Scholar 

  38. E. Parodi, L. Govaert and G. Peters, Thermochim. Acta, 657, 110 (2017).

    Article  CAS  Google Scholar 

  39. A. Ghadimi, M. Amirilargani, T. Mohammadi, N. Kasiri and B. Sadatnia, J. Membr. Sci., 458, 14 (2014).

    Article  CAS  Google Scholar 

  40. H. Sanaeepur, R. Ahmadi, A. E. Amooghin and D. Ghanbari, J. Membr. Sci., 573, 234 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Babol Noshirvani University of Technology for financial support of this project (Grant NO. BNUT/393054/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrezaei, K., Abedini, R., Lashkarbolooki, M. et al. A preferential CO2 separation using binary phases membrane consisting of Pebax®1657 and [Omim][PF6] ionic liquid. Korean J. Chem. Eng. 36, 2085–2094 (2019). https://doi.org/10.1007/s11814-019-0402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0402-z

Keywords

Navigation