Skip to main content
Log in

Insights into the Nature of Eutectic and Deep Eutectic Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A stricter definition of a deep eutectic solvent (DES) is urgent, so that it may become a sound basis for further developments in this field. This communication aims at contributing to deepening the understanding of eutectic and deep eutectic mixtures concerning their definition, thermodynamic nature and modelling. The glut of literature on DES applications should be followed by a similar effort to address the fundamental questions on their nature. This hopefully would contribute to correct some widespread misconceptions, and help to establish a stringent definition of what a DES is. DES are eutectic mixtures for which the eutectic point temperature should be lower to that of an ideal liquid mixture. To identify and characterize them, their phase diagrams should be known, in order to compare the real temperature depression to that predicted if ideality is assumed, and to define composition ranges for which they are in the liquid state at operating temperatures. It is also shown that hydrogen bonding between the DES components should not be used to define or characterize a DES, since this would describe many ideal mixtures. The future of deep eutectic solvents is quite promising, and we expect that this work will contribute to the efficient design and selection of the best DES for a given application, and to model properties and phase equilibria without which the process design is impractical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gamsjäger, H., Lorimer, J.W., Scharlin, P., Shaw, D.G.: Glossary of terms related to solubility (IUPAC Recommendations 2008). Pure Appl. Chem. 80, 233–276 (2008). https://doi.org/10.1351/pac200880020233

    Article  CAS  Google Scholar 

  2. Guthrie, F.: LII. On eutexia. Philos. Mag. Ser. 5(17), 462–482 (1884). https://doi.org/10.1080/14786448408627543

    Article  Google Scholar 

  3. Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation. Wiley, New York (2012)

    Google Scholar 

  4. Coutinho, J.A.P., Andersen, S.I., Stenby, E.H.: Evaluation of activity coefficient models in prediction of alkane solid–liquid equilibria. Fluid Phase Equilib. 103, 23–39 (1995). https://doi.org/10.1016/0378-3812(94)02600-6

    Article  CAS  Google Scholar 

  5. Hoang Pham, U.G.: Pharmaceutical applications of eutectic mixtures. J. Dev. Drugs 2, 1–2 (2013). https://doi.org/10.4172/2329-6631.1000e130

    Article  Google Scholar 

  6. Palomo Del Barrio, E., Cadoret, R., Daranlot, J., Achchaq, F.: New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70 °C and 100 °C. Sol. Energy Mater. Sol. Cells 155, 454–468 (2016). https://doi.org/10.1016/j.solmat.2016.06.048

    Article  CAS  Google Scholar 

  7. Yong, C.S., Oh, Y.-K., Jung, S.H., Rhee, J.-D., Kim, H.-D., Kim, C.-K., Choi, H.-G.: Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol. Eur. J. Pharm. Sci. 23, 347–353 (2004). https://doi.org/10.1016/j.ejps.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  8. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004). https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  9. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 99, 70–71 (2003). https://doi.org/10.1039/b210714g

    Article  CAS  Google Scholar 

  10. Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014). https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012). https://doi.org/10.1039/c2cs35178a

    Article  CAS  PubMed  Google Scholar 

  12. Tang, B., Row, K.H.: Recent developments in deep eutectic solvents in chemical sciences. Monatsh. Chem. 144, 1427–1454 (2013). https://doi.org/10.1007/s00706-013-1050-3

    Article  CAS  Google Scholar 

  13. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C.: Natural deep eutectic solvents—solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014). https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  14. Marcus, Y.: Unconventional deep eutectic solvents: aqueous salt hydrates. ACS Sustain. Chem. Eng. 5, 11780–11787 (2017). https://doi.org/10.1021/acssuschemeng.7b03528

    Article  CAS  Google Scholar 

  15. Ashworth, C.R., Matthews, R.P., Welton, T., Hunt, P.A.: Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys. Chem. Chem. Phys. 18, 18145–18160 (2016). https://doi.org/10.1039/C6CP02815B

    Article  CAS  PubMed  Google Scholar 

  16. Abbott, A.P., Ahmed, E.I., Prasad, K., Qader, I.B., Ryder, K.S.: Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 448, 2–8 (2017). https://doi.org/10.1016/j.fluid.2017.05.009

    Article  CAS  Google Scholar 

  17. Abbott, A.P., Cullis, P.M., Gibson, M.J., Harris, R.C., Raven, E.: Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem. 9, 868–872 (2007). https://doi.org/10.1039/b702833d

    Article  CAS  Google Scholar 

  18. Pontes, P.V.A., Crespo, E.A., Martins, M.A.R., Silva, L.P., Neves, C.M.S.S., Maximo, G.J., Hubinger, M.D., Batista, E.A.C., Pinho, S.P., Coutinho, J.A.P., Sadowski, G., Held, C.: Measurement and PC-SAFT modeling of solid–liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilib. 448, 69–80 (2017). https://doi.org/10.1016/j.fluid.2017.04.007

    Article  CAS  Google Scholar 

  19. Crespo, E.A., Silva, L.P., Martins, M.A.R., Fernandez, L., Ortega, J., Ferreira, O., Sadowski, G., Held, C., Pinho, S.P., Coutinho, J.A.P.: Characterization and modeling of the liquid phase of deep eutectic solvents based on fatty acids/alcohols and choline chloride. Ind. Eng. Chem. Res. 56, 12192–12202 (2017). https://doi.org/10.1021/acs.iecr.7b02382

    Article  CAS  Google Scholar 

  20. Shen, Q., Li, X., Li, W., Zhao, X.: Enhanced intestinal absorption of Daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech 12, 1044–1049 (2011). https://doi.org/10.1208/s12249-011-9672-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, J., Fu, S., Wei, N., Hou, Y., Zhang, X., Cui, H.: The effects of combined menthol and borneol on fluconazole permeation through the cornea ex vivo. Eur. J. Pharmacol. 688, 1–5 (2012). https://doi.org/10.1016/j.ejphar.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  22. Li, F., Feng, J., Cheng, Q., Zhu, W., Jin, Y.: Delivery of 125I-cobrotoxin after intranasal administration to the brain: a microdialysis study in freely moving rats. Int. J. Pharm. 328, 161–167 (2007). https://doi.org/10.1016/j.ijpharm.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  23. Gohel, M.C., Nagori, S.A.: Resolving issues of content uniformity and low permeability using eutectic blend of camphor and menthol. Indian J. Pharm. Sci. 71, 622–629 (2009). https://doi.org/10.4103/0250-474X.59543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phaechamud, T., Tuntarawongsa, S.: Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique. Int. J. Nanomed. 11, 2855–2865 (2016). https://doi.org/10.2147/IJN.S108355

    Article  CAS  Google Scholar 

  25. Stott, P.W., Williams, A.C., Barry, B.W.: Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J. Control. Release 50, 297–308 (1998). https://doi.org/10.1016/S0168-3659(97)00153-3

    Article  CAS  PubMed  Google Scholar 

  26. Mohammadi-Samani, S., Yousefi, G., Mohammadi, F., Ahmadi, F.: Meloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation. Iran. J. Basic Med. Sci. 17, 112–118 (2014)

    PubMed  PubMed Central  Google Scholar 

  27. Yong, C.S., Jung, S.H., Rhee, J.-D., Choi, H.-G., Lee, B.-J., Kim, D.-C., Choi, Y.W., Kim, C.-K.: Improved solubility and in vitro dissolution of ibuprofen from poloxamer gel using eutectic mixture with menthol. Drug Deliv. 10, 179–183 (2003). https://doi.org/10.1080/713840406

    Article  CAS  PubMed  Google Scholar 

  28. Kaplun-Frischoff, Y., Touitou, E.: Testosterone skin permeation enhancement by menthol through formation of eutectic with drug and interaction with skin lipids. J. Pharm. Sci. 86, 1394–1399 (1997). https://doi.org/10.1021/js9701465

    Article  CAS  PubMed  Google Scholar 

  29. Kang, L., Jun, H.W., McCall, J.W.: Physicochemical studies of lidocaine-menthol binary systems for enhanced membrane transport. Int. J. Pharm. 206, 35–42 (2000). https://doi.org/10.1016/S0378-5173(00)00505-6

    Article  CAS  PubMed  Google Scholar 

  30. Nazzal, S., Smalyukh, I., Lavrentovich, O., Khan, M.A.: Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int. J. Pharm. 235, 247–265 (2002). https://doi.org/10.1016/S0378-5173(02)00003-0

    Article  CAS  PubMed  Google Scholar 

  31. Ribeiro, B.D., Florindo, C., Iff, L.C., Coelho, M.A.Z., Marrucho, I.M.: Menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng. 3, 2469–2477 (2015). https://doi.org/10.1021/acssuschemeng.5b00532

    Article  CAS  Google Scholar 

  32. Aroso, I.M., Craveiro, R., Rocha, Â., Dionísio, M., Barreiros, S., Reis, R.L., Paiva, A., Duarte, A.R.C.: Design of controlled release systems for THEDES—therapeutic deep eutectic solvents, using supercritical fluid technology. Int. J. Pharm. 492, 73–79 (2015). https://doi.org/10.1016/j.ijpharm.2015.06.038

    Article  CAS  PubMed  Google Scholar 

  33. Aroso, I.M., Silva, J.C., Mano, F., Ferreira, A.S.D., Dionísio, M., Sá-Nogueira, I., Barreiros, S., Reis, R.L., Paiva, A., Duarte, A.R.C.: Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur. J. Pharm. Biopharm. 98, 57–66 (2016). https://doi.org/10.1016/j.ejpb.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Tereshatov, E.E., Boltoeva, M.Y., Folden, C.M.: First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids. Green Chem. 18, 4616–4622 (2016). https://doi.org/10.1039/c5gc03080c

    Article  CAS  Google Scholar 

  35. Florindo, C., Branco, L.C., Marrucho, I.M.: Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib. 448, 135–142 (2017). https://doi.org/10.1016/j.fluid.2017.04.002

    Article  CAS  Google Scholar 

  36. Duarte, A.R.C., Ferreira, A.S.D., Barreiros, S., Cabrita, E., Reis, R.L., Paiva, A.: A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: solubility and permeability studies. Eur. J. Pharm. Biopharm. 114, 296–304 (2017). https://doi.org/10.1016/j.ejpb.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  37. Cordeiro, T., Castiñeira, C., Mendes, D., Danède, F., Sotomayor, J., Fonseca, I.M., Gomes da Silva, M., Paiva, A., Barreiros, S., Cardoso, M.M., Viciosa, M.T., Correia, N.T., Dionisio, M.: Stabilizing unstable amorphous menthol through inclusion in mesoporous silica hosts. Mol. Pharm. 14, 3164–3177 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00386

    Article  CAS  PubMed  Google Scholar 

  38. Dietz, C.H.J.T., Kroon, M.C., Di Stefano, M., van Sint Annaland, M., Gallucci, F.: Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane. Faraday Discuss. 206, 77–92 (2018). https://doi.org/10.1039/C7FD00152E

    Article  CAS  Google Scholar 

  39. Florindo, C., McIntosh, A.J.S., Welton, T., Branco, L.C., Marrucho, I.M.: A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Phys. Chem. Chem. Phys. 20, 206–213 (2017). https://doi.org/10.1039/C7CP06471C

    Article  CAS  PubMed  Google Scholar 

  40. Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001). https://doi.org/10.1021/ie0003887

    Article  CAS  Google Scholar 

  41. Maugeri, Z., Domínguez de María, P.: Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv. 2, 421–425 (2012). https://doi.org/10.1039/C1RA00630D

    Article  CAS  Google Scholar 

  42. Zafarani-Moattar, M.T., Asadzadeh, B., Shekaari, H.: Phase equilibrium of aqueous glycine + choline chloride ionic liquid solutions. J. Solution Chem. 45, 1842–1856 (2016). https://doi.org/10.1007/s10953-016-0537-z

    Article  CAS  Google Scholar 

  43. Chemat, F., Anjum, H., Shariff, A.M., Kumar, P., Murugesan, T.: Thermal and physical properties of (choline chloride + urea + l-arginine) deep eutectic solvents. J. Mol. Liq. 218, 301–308 (2016). https://doi.org/10.1016/j.molliq.2016.02.062

    Article  CAS  Google Scholar 

  44. Fernandez, L., Silva, L.P., Martins, M.A.R., Ferreira, O., Ortega, J., Pinho, S.P., Coutinho, J.A.P.: Indirect assessment of the fusion properties of choline chloride from solid–liquid equilibria data. Fluid Phase Equilib. 448, 9–14 (2017). https://doi.org/10.1016/j.fluid.2017.03.015

    Article  CAS  Google Scholar 

  45. Maximo, G.J., Santos, R.J.B.N., Brandao, P., Esperanca, J.M.S.S., Costa, M.C., Meirelles, A.J.A., Freire, M.G., Coutinho, J.A.P.: Generating ionic liquids from ionic solids: an investigation of the melting behavior of binary mixtures of ionic liquids. Cryst. Growth Des. 14, 4270–4277 (2014). https://doi.org/10.1021/cg500655s

    Article  CAS  Google Scholar 

  46. Stolarska, O., Soto, A., Rodríguez, H., Smiglak, M.: Properties modification by eutectic formation in mixtures of ionic liquids. RSC Adv. 5, 22178–22187 (2015). https://doi.org/10.1039/C4RA17268J

    Article  CAS  Google Scholar 

  47. Domańska, U., Okuniewska, P., Królikowski, M.: Separation of 2-phenylethanol (PEA) from water using ionic liquids. Fluid Phase Equilib. 423, 109–119 (2016). https://doi.org/10.1016/j.fluid.2016.04.022

    Article  CAS  Google Scholar 

  48. Mahrova, M., Vilas, M., Domínguez, Á., Gómez, E., Calvar, N., Tojo, E.: Physicochemical characterization of new sulfonate and sulfate ammonium ionic liquids. J. Chem. Eng. Data 57, 241–248 (2012). https://doi.org/10.1021/je200208h

    Article  CAS  Google Scholar 

  49. Lopes, J.M., Paninho, A.B., Môlho, M.F., Nunes, A.V.M., Rocha, A., Lourenço, N.M.T., Najdanovic-Visak, V.: Biocompatible choline based ionic salts: solubility in short-chain alcohols. J. Chem. Thermodyn. 67, 99–105 (2013). https://doi.org/10.1016/J.JCT.2013.07.025

    Article  CAS  Google Scholar 

  50. Diedrichs, A., Gmehling, J.: Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib. 244, 68–77 (2006). https://doi.org/10.1016/j.fluid.2006.03.015

    Article  CAS  Google Scholar 

  51. Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41, 7780–7802 (2012). https://doi.org/10.1039/c2cs35177c

    Article  CAS  PubMed  Google Scholar 

  52. Wu, M., Yalkowsky, S.: Estimation of the molar heat capacity change on melting of organic compounds. Ind. Eng. Chem. Res. 48, 1063–1066 (2009). https://doi.org/10.1021/ie801587c

    Article  CAS  Google Scholar 

  53. Flynn, G.L., Neau, S.H.: Solid and liquid heat capacities of n-alkyl para-aminobenzoates near the melting point. Pharm. Res. 7, 1157–1162 (1990). https://doi.org/10.1023/A:1015984310068

    Article  PubMed  Google Scholar 

  54. Yalkowsky, S.H., Wu, M.: Estimation of the ideal solubility (crystal–liquid fugacity ratio) of organic compounds. J. Pharm. Sci. 99, 1100–1106 (2010). https://doi.org/10.1002/JPS.21897

    Article  CAS  PubMed  Google Scholar 

  55. Pappa, G.D., Voutsas, E.C., Magoulas, K., Tassios, D.P.: Estimation of the differential molar heat capacities of organic compounds at their melting point. Ind. Eng. Chem. Res. 44, 3799–3806 (2005). https://doi.org/10.1021/ie048916s

    Article  CAS  Google Scholar 

  56. Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions. Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  57. Morrison, H.G., Sun, C.C., Neervannan, S.: Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int. J. Pharm. 378, 136–139 (2009). https://doi.org/10.1016/j.ijpharm.2009.05.039

    Article  CAS  PubMed  Google Scholar 

  58. Meng, X., Ballerat-Busserolles, K., Husson, P., Andanson, J.-M.: Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent. New J. Chem. 40, 4492–4499 (2016). https://doi.org/10.1039/C5NJ02677F

    Article  CAS  Google Scholar 

  59. Rai, U.S., Rai, R.N.: Some physicochemical studies on organic eutectics and molecular complex: urea–p-nitrophenol system. J. Mater. Res. 14, 1299–1305 (1999). https://doi.org/10.1557/JMR.1999.0177

    Article  CAS  Google Scholar 

  60. Araujo, C.F., Coutinho, J.A.P., Nolasco, M.M., Parker, S.F., Ribeiro-Claro, P.J.A., Rudić, S., Soares, B.I.G., Vaz, P.D.: Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Phys. Chem. Chem. Phys. 19, 17998–18009 (2017). https://doi.org/10.1039/C7CP01286A

    Article  CAS  PubMed  Google Scholar 

  61. Faggian, M., Sut, S., Perissutti, B., Baldan, V., Grabnar, I., Dall’Acqua, S.: Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules 21, 1–11 (2016). https://doi.org/10.3390/molecules21111531

    Article  CAS  Google Scholar 

  62. Dai, Y., van Spronsen, J., Witkamp, G.-J.J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68 (2013). https://doi.org/10.1016/j.aca.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  63. Hayyan, A., Mjalli, F.S., Alnashef, I.M., Al-Wahaibi, T., Al-Wahaibi, Y.M., Hashim, M.A.: Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta 541, 70–75 (2012). https://doi.org/10.1016/j.tca.2012.04.030

    Article  CAS  Google Scholar 

  64. Hayyan, A., Mjalli, F.S., Alnashef, I.M., Al-Wahaibi, Y.M., Al-Wahaibi, T., Hashim, M.A.: Glucose-based deep eutectic solvents: physical properties. J. Mol. Liq. 178, 137–141 (2013). https://doi.org/10.1016/j.molliq.2012.11.025

    Article  CAS  Google Scholar 

  65. Carriazo, D., Serrano, M.C., Gutiérrez, M.C., Ferrer, M.L., del Monte, F.: Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 41, 4996–5014 (2012). https://doi.org/10.1039/c2cs15353j

    Article  CAS  PubMed  Google Scholar 

  66. Dai, Y., Witkamp, G.J., Verpoorte, R., Choi, Y.H.: Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187, 14–19 (2015). https://doi.org/10.1016/j.foodchem.2015.03.123

    Article  CAS  PubMed  Google Scholar 

  67. Ruß, C., König, B.: Low melting mixtures in organic synthesis—an alternative to ionic liquids? Green Chem. 14, 2969–2982 (2012). https://doi.org/10.1039/c2gc36005e

    Article  CAS  Google Scholar 

  68. Espino, M., de los Ángeles Fernández, M., Gomez, F.J.V., Silva, M.F.: Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 76, 126–136 (2016). https://doi.org/10.1016/j.trac.2015.11.006

    Article  CAS  Google Scholar 

  69. Francisco, M., Van Den Bruinhorst, A., Kroon, M.C.: Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013). https://doi.org/10.1002/anie.201207548

    Article  CAS  Google Scholar 

  70. Lavaud, A., Laguerre, M., Birtic, S., Tixier, Fabiano, A.S., Roller, M., Chemat, F., Bily, A.C.: Eutectic extraction solvents, extraction methods by eutectigenesis using said solvents, and extracts derived from said extraction methods—Patent WO 2016162703 A1 (2016)

  71. Naturex: Naturex Group and the Personal Care Market, http://www.naturex.com/BUSINESS-UNITS/Personal-Care#Eutectys

  72. Ilgen, F., Ott, D., Kralisch, D., Reil, C., Burkhard, K.: Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem. 11, 1948–1954 (2009). https://doi.org/10.1039/b917548m

    Article  CAS  Google Scholar 

  73. Martins, M., Aroso, I.M., Reis, R.L., Duarte, A.R.C., Craveiro, R., Paiva, A.: Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic eolvents. AIChE J. 60, 3701–3706 (2014). https://doi.org/10.1002/aic.14607

    Article  CAS  Google Scholar 

  74. Miller, E., Hartel, R.W.: Sucrose crystallization in caramel. J. Food Eng. 153, 28–38 (2015). https://doi.org/10.1016/j.jfoodeng.2014.11.028

    Article  CAS  Google Scholar 

  75. Hurtta, M., Pitkänen, I., Knuutinen, J.: Melting behaviour of d-sucrose, d-glucose and d-ructose. Carbohydr. Res. 339, 2267–2273 (2004). https://doi.org/10.1016/j.carres.2004.06.022

    Article  CAS  PubMed  Google Scholar 

  76. Magoń, A., Wurm, A., Schick, C., Pangloli, P., Zivanovic, S., Skotnicki, M., Pyda, M.: Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim. Acta 603, 149–161 (2015). https://doi.org/10.1016/j.tca.2014.12.013

    Article  CAS  Google Scholar 

  77. Gong, X., Wang, C., Zhang, L., Qu, H.: Solubility of xylose, mannose, maltose monohydrate, and trehalose dihydrate in ethanol–water solutions. J. Chem. Eng. Data 57, 3264–3269 (2012). https://doi.org/10.1021/je300885g

    Article  CAS  Google Scholar 

  78. Van Putten, R.J., Winkelman, J.G.M., Keihan, F., Van Der Waal, J.C., De Jong, E., Heeres, H.J.: Experimental and modeling studies on the solubility of d-arabinose, d-fructose, d-glucose, d-mannose, sucrose and d-xylose in methanol and methanol–water mixtures. Ind. Eng. Chem. Res. 53, 8285–8290 (2014). https://doi.org/10.1021/ie500576q

    Article  CAS  Google Scholar 

  79. Ferreira, O., Brignole, E.A., Macedo, E.A.: Phase equilibria in sugar solutions using the A-UNIFAC model. Ind. Eng. Chem. Res. 42, 6212–6222 (2003). https://doi.org/10.1021/ie030246n

    Article  CAS  Google Scholar 

  80. Choi, Y.H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I.W.C.E., Witkamp, G.-J., Verpoorte, R.: Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156, 1701–1705 (2011). https://doi.org/10.1104/pp.111.178426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roux, M.V., Temprado, M., Chickos, J.S.: Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16. J. Chem. Thermodyn. 37, 941–953 (2005). https://doi.org/10.1016/J.JCT.2004.12.011

    Article  CAS  Google Scholar 

  82. Chickos, J.S., Braton, C.M., Hesse, D.G., Liebman, J.F.: Estimating entropies and enthalpies of fusion of organic compounds. J. Org. Chem. 56, 927–938 (1991). https://doi.org/10.1021/jo00003a007

    Article  CAS  Google Scholar 

  83. Tong, B., Liu, R.-B., Meng, C.-G., Yu, F.-Y., Ji, S.-H., Tan, Z.-C.: Heat capacities and nonisothermal thermal decomposition reaction kinetics of d-mannitol. J. Chem. Eng. Data 55, 119–124 (2010). https://doi.org/10.1021/je900285w

    Article  CAS  Google Scholar 

  84. Jesus, A.J.L., Tomé, L.I.N., Eusébio, M.E., Redinha, J.S.: Enthalpy of sublimation in the study of the solid state of organic compounds. Application to erythritol and threitol. J. Phys. Chem. B 109, 18055–18060 (2005). https://doi.org/10.1021/jp051621n

    Article  CAS  Google Scholar 

  85. Qin, L., Li, J., Cheng, H., Chen, L., Qi, Z., Yuan, W.: Association extraction for vitamin E recovery from deodorizer distillate by in situ formation of deep eutectic solvent. AIChE J. 63, 2212–2220 (2017). https://doi.org/10.1002/aic.15606

    Article  CAS  Google Scholar 

  86. Lloret, J.O., Vega, L.F., Llovell, F.: Accurate description of thermophysical properties of tetraalkylammonium chloride deep eutectic solvents with the soft-SAFT equation of state. Fluid Phase Equilib. 448, 81–93 (2017). https://doi.org/10.1016/j.fluid.2017.04.013

    Article  CAS  Google Scholar 

  87. van Osch, D.J.G.P., Zubeir, L.F., van den Bruinhorst, A., Rocha, M.A.A., Kroon, M.C.: Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem. 17, 4518–4521 (2015). https://doi.org/10.1039/C5GC01451D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed in the scope of the Project CICECO – Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (Ref. FCT UID/CTM/50011/2013) and Associate Laboratory LSRE-LCM, POCI-01-0145-FEDER-006984 (Ref. FCT UID/EQU/50020/2013), both financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work is also a result of Project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). FCT is also acknowledged for funding the project DeepBiorefinery (PTDC/AGRTEC/1191/2014). The authors thank Olga Ferreira for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João A. P. Coutinho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M.A.R., Pinho, S.P. & Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J Solution Chem 48, 962–982 (2019). https://doi.org/10.1007/s10953-018-0793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0793-1

Keywords

Navigation