Skip to main content
Log in

Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent

  • Material (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We introduce a facile strategy to upcycle lignin waste to valuable activated carbon (AC). Unlike conventional preparation processes of AC, such as high-temperature carbonization above 600 °C followed by chemical or physical activation, we synthesized AC through low-carbonization (∼300 °C), ball-milling, and thermal activation. Low-temperature carbonization effectively led to the formation of the micro-pores and simultaneously high yield. Uniform activated morphology of char lignin is achieved through a ball-milling process. The as-synthesized AC exhibited a large specific surface area of 1075.18 m2 g−1, high specific capacitance of 115.1 F g−1, and excellent adsorbability of 0.23 gtoluene per gactivated carbon. Therefore, we believe that the presented facile strategy could lead to the realization of upcycling of lignin waste to highly useful AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chatterjee and T. Saito, ChemSusChem, 8, 3941 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. A. Duval and M. Lawoko, React. Funct. Polym, 85, 78 (2014).

    Article  CAS  Google Scholar 

  3. K. Barta, P. Anastas, E. Beach, T. Hansen, G. Warner and P. Foley, U.S. Patent, 10,059,650 (2018).

  4. M. N. Belgacem and A. Gandini, Monomers, polymers and composites from renewable resources, Amsterdam, Elsevier (2008).

    Google Scholar 

  5. H.-I. Joh, H. K. Song, C.-H. Lee, J.-M. Yun, S. M. Jo, S. Lee, S.-I. Na, A.-T. Chien and S. Kumar, Carbon, 70, 308 (2014).

    Article  CAS  Google Scholar 

  6. H.-I. Joh, H. K. Song, K.-B. Yi and S. Lee, Carbon, 53, 409 (2013).

    Article  CAS  Google Scholar 

  7. S. Sircar, T. C. Golden and M. B. Rao, Carbon, 34, 1 (1996).

    Article  CAS  Google Scholar 

  8. P. J. M. Carrott and M. M. L. Ribeiro Carrott, Bioresour. Technol., 98, 2301 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Z. Gao, Y Zhang, N. Song and X. Li, Mater. Res. Lett, 5, 69 (2017).

    Article  CAS  Google Scholar 

  10. D. A. and G. Hegde, RSC Adv., 5, 88339 (2015).

    Article  CAS  Google Scholar 

  11. A. Kumar, H. Hegde, S. A. B. A. Manaf, Z. Ngaini and K. V Sharma, Chem. Commun, 50, 12702 (2014).

    Article  CAS  Google Scholar 

  12. E. Gonzalez-Serrano, T. Cordero, J. Rodriguez-Mirasol, L. Cotoruelo and J. J. Rodriguez, Water Res., 38, 3043 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. R. J. Paterson, Lignin: properties and applications in biotechnology and bioenergy, Nova Science Publishers (2012).

  14. S. Yorgun, N. Vural and H. Demiral, Micropor. Mesopor. Mater., 122, 189 (2009).

    Article  CAS  Google Scholar 

  15. M. A. Lillo-Ródenas, D. Cazorla-Amoros and A. Linares-Solano, Carbon, 41, 267 (2003).

    Article  Google Scholar 

  16. T Kou, B. Yao, T Liu and Y. Li, J. Mater. Chem. A, 5, 17151 (2017).

    Article  CAS  Google Scholar 

  17. X. Ma, H. Yang, L. Yu, Y. Chen and Y. Li, Materials, 7, 4431 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. J. Rodriguez-Mirasol, T. Cordero and J. J. Rodriguez, Energy Fuels, 7, 133 (1993).

    Article  CAS  Google Scholar 

  19. X. Xie, B. Goodell, D. Zhang, D. C. Nagle, Y. Qian, M. L. Peterson and J. Jellison, Bioresour. Technol., 100, 1797 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. M. Kijima, T. Hirukawa, F. Hanawa and T. Hata, Bioresour. Technol, 102, 6279 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. M. Brebu, G. Cazacu and O. Chirila, Cell. Chem. Technol, 45, 43 (2011).

    CAS  Google Scholar 

  22. M. Brebu and C. Vasile, Cell. Chem. Technol, 44, 353 (2010).

    CAS  Google Scholar 

  23. R. Alén, E. Kuoppala and P. Oesch, J. Anal. Appl. Pyrolysis, 36, 137 (1996).

    Article  Google Scholar 

  24. J. Rodrigues, J. Graça and H. Pereira, J. Anal. Appl. Pyrolysis, 58–59, 481 (2001).

    Article  Google Scholar 

  25. D. Yang, L.-X. Zhong, T.-Q. Yuan, X.-W. Peng and R.-C. Sun, Ind. Crop. Prod, 43, 141 (2013).

    Article  CAS  Google Scholar 

  26. K. Oh, S. Lee, S. Park, B.-C. Ku, S. H. Lee, Y. H. Bang and H.-I. Joh, Sci. Adv. Mater., 9, 1566 (2017).

    Article  CAS  Google Scholar 

  27. E. Arenas and F. Chejne, Carbon, 42, 2451 (2004).

    Article  CAS  Google Scholar 

  28. A. Zolin, A. D. Jensen, P. A. Jensen and K. Dam-Johansen, Fuel, 81, 1065 (2002).

    Article  CAS  Google Scholar 

  29. R. Azargohar and A. K. Dalai, Micropor. Mesopor. Mater., 85, 219 (2005).

    Article  CAS  Google Scholar 

  30. M. J. Lashaki, M. Fayaz, H. Wang, Z. Hashisho, J. H. Philips, J. E. Anderson and M. Nichols, Environ. Sci. Technol., 46, 4083 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF) (NRF-2018R1D1A1B07045368 and NRF-2018M1A2A2061989).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Joon Lee or Han-Ik Joh.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YK., Chung, S., Hwang, S.Y. et al. Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent. Korean J. Chem. Eng. 36, 1543–1547 (2019). https://doi.org/10.1007/s11814-019-0340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0340-9

Keywords

Navigation