Skip to main content
Log in

Enhancing mechanical properties of epoxy resin using waste lignin and salicylate alumoxane nanoparticles

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Extracted lignin from wastewater of Kraft process and lab-made salicylate alumoxane (Sal-A) nanoparticles were used as toughening agents in epoxy matrix. Epoxy/lignin composite, epoxy/Sal-A and epoxy/lignin/Sal-Al nanocomposites with various toughening agent loadings were cured with an aromatic diamine hardener. Lignin as an available cheap material and Sal-A, as multifunctional structures, both containing numerous phenolic hydroxyls on their surfaces, were incorporated into epoxy matrix with the aim of improving thermal and some mechanical properties of the resulting composites. Both particles interacted physically (directly) and chemically (indirectly) with the epoxy chains. Simplex lattice mixture design of experiment was applied for formulation development and optimization. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the extracted lignin, Sal-A nanoparticles and synthesized composites. Differential scanning calorimetry (DSC) was used to interpret thermal curing process. The presence of lignin and Sal-A nanoparticles in the epoxy matrix decreased the exothermic peak temperature and total heat of curing reaction. In the presence of 2.5 wt% lignin and 1.875 wt% Sal-A nanoparticles, tensile strength of epoxy composites was 22.23% and 30.92% higher than that of reference (pure) epoxy resin, respectively. Vickers hardness of epoxy composites in the presence of 2.5 wt% lignin and 2.5 wt% Sal-A nanoparticles was increased by 17.41% and 15.39%, accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hussain, M. Hojjati, M. Okamoto and R.E. Gorga, J. Compos. Mater., 40, 1511 (2006).

    Article  CAS  Google Scholar 

  2. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli and J. Kenny, Polym. Degrad. Stabil., 95, 2126 (2010).

    Article  CAS  Google Scholar 

  3. P. Cosoli, G. Scocchi, S. Pricl and M. Fermeglia, Micropor. Mesopor. Mater., 107, 169 (2008).

    Article  CAS  Google Scholar 

  4. H. Ma, Z. Xu, L. Tong, A. Gu and Z. Fang, Polym. Degrad. Stabil., 91, 2951 (2006).

    Article  CAS  Google Scholar 

  5. J. K. Pandey, K. R. Reddy, A. P. Kumar and R. Singh, Polym. Degrad. Stabil., 88, 234 (2005).

    Article  CAS  Google Scholar 

  6. A. P. Kumar, D. Depan, N. S. Tomer and R. P. Singh, Prog. Polym. Sci., 34, 479 (2009).

    Article  CAS  Google Scholar 

  7. N. Sheng, M. C. Boyce, D. M. Parks, G. Rutledge, J. Abes and R. Cohen, Polymer, 45, 487 (2004).

    Article  CAS  Google Scholar 

  8. Y. Si, Z. Guo and W. Liu, ACS Appl. Mater. Inter., 8, 16511 (2016).

    Article  CAS  Google Scholar 

  9. J. Michels, R. Widmann, C. Czaderski, R. Allahvirdizadeh and M. Motavalli, Compos. Part B-Eng., 77, 484 (2015).

    Article  CAS  Google Scholar 

  10. B. Zhang, M. Johlitz, A. Lion, L. Ernst, K. Jansen, D.-K. Vu and L. Weiss, 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), IEEE (2016).

    Google Scholar 

  11. C. P. Wang, Polymers for Electronic and Photonic Application, Elsevier Science (2013).

    Google Scholar 

  12. A. M. El Saeed, M. A. El-Fattah and M. Dardir, Prog. Org. Coat., 78, 83 (2015).

    Article  Google Scholar 

  13. F. El-Tantawy, K. Kamada and H. Ohnabe, Mater. Lett., 56, 112 (2002).

    Article  CAS  Google Scholar 

  14. R. Khan, M. R. Azhar, A. Anis, M. A. Alam, M. Boumaza and S. M. Al-Zahrani, J. Coat. Technol. Res., 13, 159 (2016).

    Article  CAS  Google Scholar 

  15. J. Gu, Q. Zhang, H. Li, Y. Tang, J. Kong and J. Dang, Polym-Plast. Technol., 46, 1129 (2007).

    Article  CAS  Google Scholar 

  16. D. Zhang, W. Liu, L. Tang, K. Zhou and H. Luo, Appl. Phys. Lett., 110, 133902 (2017).

    Article  Google Scholar 

  17. H. Luo, D. Zhang, C. Jiang, X. Yuan, C. Chen and K. Zhou, ACS Appl. Mater. Inter., 7, 8061 (2015).

    Article  CAS  Google Scholar 

  18. H. Luo, J. Roscow, X. Zhou, S. Chen, X Han, K. Zhou, D. Zhang and C.R. Bowen, J. Mater. Chem. A, 5, 7091 (2017), DOI:10.1039/ c7ta00136c.

    Article  CAS  Google Scholar 

  19. J. Gu, S. Xu, Q. Zhuang, Y. Tang and J. Kong, IEEE T. Dielect. El. In., 24, 784 (2017).

    Article  Google Scholar 

  20. X. Yang, L. Tang, Y. Guo, C. Liang, Q. Zhang, K. Kou and J. Gu, Composites A, 101, 237 (2017).

    Article  CAS  Google Scholar 

  21. J. Gu, Y. Guo, X, Yang, C. Liang, W. Geng, L. Tang, N. Li and Q. Zhang, Composites A, 95, 267 (2017).

    Article  CAS  Google Scholar 

  22. W. Zhao, J. Kong, H. Liu, Q. Zhuang, J. Gu and Z. Guo, Nanoscale, 8, 19984 (2016).

    Article  CAS  Google Scholar 

  23. S. Halder, M. Goyat and P. Ghosh, High Perform. Polym., 28, 697 (2015).

    Article  Google Scholar 

  24. A. Ghasemi-Kahrizsangi, J. Neshati, H. Shariatpanahi and E. Akbarinezhad, Prog. Org. Coat., 85, 199 (2015).

    Article  CAS  Google Scholar 

  25. J. Guo, H. Song, H. Liu, C. Luo, Y. Ren, T. Ding, M. A. Khan, D. P. Young, X. Liu, X. Zhang, J. Kong and Z. Guo, J. Mater. Chem. C, 5, 5334 (2017).

    Article  CAS  Google Scholar 

  26. H. Gu, C. Ma, C. Liang, X. Meng, J. Gu and Z. Guo, J. Mater. Chem. C, 5, 4275 (2017).

    Article  CAS  Google Scholar 

  27. Y. Zhou, M. Hosur, S. Jeelani and P. K. Mallick, J. Mater. Sci., 47, 5002 (2012).

    Article  CAS  Google Scholar 

  28. H. Luo, C. Ma, X. Zhou, S. Chen and D. Zhang, Macromolecules, 50, 5132 (2017), DOI:10.1021/acs.macromol.7b00792.

    Article  CAS  Google Scholar 

  29. A. A. Derakhshan and L. Rajabi, Powder Technol., 226, 117 (2012).

    Article  CAS  Google Scholar 

  30. A. R. Barron and S. J. Obrey, Supra-molecular alkylalumoxanes, US Patent, 6,322,890 B1 (2001).

    Google Scholar 

  31. T. S. Halbach and R. Mülhaupt, Polymer, 49, 867 (2008).

    Article  CAS  Google Scholar 

  32. A. S. Mistry, Q. P. Pham, C. Schouten, T. Yeh, E. M. Christenson, A. G. Mikos and J. A. Jansen, J. Biomed. Mater. Res. A., 92, 451 (2010).

    Google Scholar 

  33. L. Rajabi, M. Marzban and A. A. Derakhshan, Iran. Polym. J., 23, 203 (2014).

    Article  CAS  Google Scholar 

  34. D. Glennie and J. McCarthy, Chemistry of lignin, McGraw-Hill, New York (1962).

    Google Scholar 

  35. C. I. Simionescu, V. Rusan, M.M. Macoveanu, G. Cazacu, R. Lipsa, C. Vasile, A. Stoleriu and A. Ioanid, Compos. Sci. Technol., 48, 317 (1993).

    Article  CAS  Google Scholar 

  36. R.-C. Sun, Cereal straw as a resource for sustainable biomaterials and biofuels: Chemistry, extractives, lignins, hemicelluloses and cellulose, Elsevier, Beijing (2010).

    Google Scholar 

  37. E. Dorrestijn, L. J. Laarhoven, I. W. Arends and P. Mulder, J. Anal. Appl. Pyrol., 54, 153 (2000).

    Article  CAS  Google Scholar 

  38. W. Boerjan, J. Ralph and M. Baucher, Annu. Rev. Plant Biol., 54, 519 (2003).

    Article  CAS  Google Scholar 

  39. S. Laurichesse and L. Avérous, Prog. Polym. Sci., 39, 1266 (2014).

    Article  CAS  Google Scholar 

  40. C. Aouf, J. Lecomte, P. Villeneuve, E. Dubreucq and H. Fulcrand, Green Chem., 14, 2328 (2012).

    Article  CAS  Google Scholar 

  41. J. Behin and N. Sadeghi, International Journal of Recycling of Organic Waste in Agriculture, 5, 289 (2016).

    Article  Google Scholar 

  42. A. Mirmohseni-Namin, S. Nikafshar and F. Mirmohseni, RSC Adv., 5, 53025 (2015).

    Article  CAS  Google Scholar 

  43. C. L. Sherman, R. C. Zeigler, N. E. Verghese and M. J. Marks, Polymer, 49, 1164 (2008).

    Article  CAS  Google Scholar 

  44. W. Liu, R. Zhou, H. L. S. Goh, S. Huang and X. Lu, ACS Appl. Mater. Inter., 6, 5810 (2014).

    Article  CAS  Google Scholar 

  45. D. Feldman and M. Khoury, J. Adhes. Sci. Technol., 2, 107 (1988).

    Article  CAS  Google Scholar 

  46. D. Feldman, D. Banu, A. Natansohn and J. Wang, J. Appl. Polym. Sci., 42, 1537 (1991).

    Article  CAS  Google Scholar 

  47. K. Pandey, J. Appl. Polym. Sci., 71, 1969 (1999).

    Article  CAS  Google Scholar 

  48. D. Feldman and D. Banu, J. Polym. Sci. A1, 26, 973 (1988).

    Article  CAS  Google Scholar 

  49. J. Gu, J. Dang, Y. Wu, C. Xie and Y. Han, Polym-Plast Technol. Eng., 51, 1198 (2012).

    Article  CAS  Google Scholar 

  50. B. Wetzel, F. Haupert and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003).

    Article  CAS  Google Scholar 

  51. D. S. Achilias, M. M. Karabela, E. A. Varkopoulou and I.D. Sideridou, J. Macromol. Sci. A., 49, 630 (2012).

    Article  CAS  Google Scholar 

  52. W. Chow, S. Grishchuk, T. Burkhart and J. Karger-Kocsis, Thermochim. Acta, 543, 172 (2012).

    Article  CAS  Google Scholar 

  53. E. Petrie, Epoxy adhesive formulations, McGraw Hill Professional (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Behin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behin, J., Rajabi, L., Etesami, H. et al. Enhancing mechanical properties of epoxy resin using waste lignin and salicylate alumoxane nanoparticles. Korean J. Chem. Eng. 35, 602–612 (2018). https://doi.org/10.1007/s11814-017-0301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0301-0

Keywords

Navigation