Skip to main content
Log in

Thermal performance and thermal decomposition kinetics of a novel lignin-based epoxy resin containing phosphorus and nitrogen elements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lignin-based epoxy resins containing phosphorus (P) and nitrogen (N) elements were prepared by blending the epoxy resin (EP) with different amounts of lignin-based flame retardant additive (Lig-F). The thermal performance of EP thermosets was performed via thermogravimetric analysis coupled with Fourier transformation infrared spectroscopy (TG-FTIR). The results showed that the presence of Lig-F had significant influence on thermal stability (tested by TG) and flame retardancy (determined by limited oxygen index, vertical burning and cone calorimeter) of EP thermosets. 1H NMR and FTIR analyses confirmed the successful synthesis of flame retardant (DOPO-PA) and modification of lignin, and the evolution of gas produced by thermal decomposition was different with different quantities of Lig-F added. Finally, the activation energy (E) of cured 10% Lig-F/EP was measured by two different methods, namely Flynn–Wall–Ozawa and Kissinger-Akahira-Sunoe, which was obviously higher than that of neat EP.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Unnikrishnan KP, Thachil ET. Aging and thermal studies on epoxy resin modified by epoxidized novolacs. Polym-Plast Technol. 2006;45(4):469–74.

    Article  CAS  Google Scholar 

  2. Azeez AA, Rhee KY, Park SJ, Hui D. Epoxy clay nanocomposites-processing, properties and applications: a review. Compos Part B-Eng. 2013;45(1):308–20.

    Article  CAS  Google Scholar 

  3. Allaoui A, Bai S, Cheng HM, Bai JB. Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol. 2002;62(15):1993–8.

    Article  CAS  Google Scholar 

  4. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer. 2006;47(6):2036–45.

    Article  CAS  Google Scholar 

  5. Rakotomalala M, Wagner S, Doering M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials. 2010;3(8):4300–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo Y, Bao C, Song L, Yuan B, Hu Y. In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind Eng Chem Res. 2011;50(13):7772–83.

    Article  CAS  Google Scholar 

  7. Qian L-J, Ye L-J, Xu G-Z, Liu J, Guo J-Q. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym Degrad Stabil. 2011;96(6):1118–24.

    Article  CAS  Google Scholar 

  8. Martins MSS, Schartel B, Magalhaes FD, Pereira CMC. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2017;41(2):111–30.

    Article  CAS  Google Scholar 

  9. Levchik SV, Weil ED. Thermal decomposition, combustion and flame-retardancy of epoxy resins-a review of the recent literature. Polym Int. 2004;53(12):1901–29.

    Article  CAS  Google Scholar 

  10. Jiang S-D, Tang G, Chen J, Huang Z-Q, Hu Y. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin. J Hazard Mater. 2018;342:689–97.

    Article  CAS  PubMed  Google Scholar 

  11. Unlu SM, Dogan SD, Dogan M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym Advan Technol. 2014;25(8):769–76.

    Article  CAS  Google Scholar 

  12. Wang J, Qian L, Xu B, Xi W, Liu X. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stabil. 2015;122:8–17.

    Article  CAS  Google Scholar 

  13. Wang X, Xing W, Feng X, Yu B, Lu H, Song L, et al. The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chem Eng J. 2014;250:214–21.

    Article  CAS  Google Scholar 

  14. Yu B, Shi Y, Yuan B, Qiu S, Xing W, Hu W, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A. 2015;3(15):8034–44.

    Article  CAS  Google Scholar 

  15. Wang R, Zhuo D, Weng Z, Wu L, Cheng X, Zhou Y, et al. A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J Mater Chem A. 2015;3(18):9826–36.

    Article  CAS  Google Scholar 

  16. Chen WY, Wang YZ, Chang FC. Thermal and flame retardation properties of melamine phosphate-modified epoxy resins. J Polym Res. 2004;11(2):109–17.

    Article  Google Scholar 

  17. Xiong Y, Jiang Z, Xie Y, Zhang X, Xu W. Development of a DOPO-containing melamine epoxy hardeners and its thermal and flame-retardant properties of cured products. J Appl Polym Sci. 2013;127(6):4352–8.

    Article  CAS  Google Scholar 

  18. Qiu S, Ma C, Wang X, Zhou X, Feng X, Yuen RKK, et al. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. J Hazard Mater. 2018;344:839–48.

    Article  CAS  PubMed  Google Scholar 

  19. Xiao WD, He PX, Hu GP, He BQ. Study on the flame-retardance and thermal stability of the acid anhydride-cured epoxy resin flame-retarded by triphenyl phosphate and hydrated alumina. J Fire Sci. 2001;19(5):369–77.

    Article  CAS  Google Scholar 

  20. Kodolov VI, Shuklin SG, Kuznetsov AP, Makarova LG, Bystrov SG, Demicheva OV, et al. Formation and investigation of epoxy intumescent compositions modified by active additives. J Appl Polym Sci. 2002;85(7):1477–83.

    Article  CAS  Google Scholar 

  21. Iji M, Kiuchi Y. Flame-retardant epoxy resin compounds containing novolac derivatives with aromatic compounds. Polym Advan Technol. 2001;12(7):393–406.

    Article  CAS  Google Scholar 

  22. Francis B, Thomas S, Sadhana R, Thuaud N, Ramaswamy R, Jose S, et al. Diglycidyl ether of risphenol-A epoxy resin modified using poly (ether ether ketone) with pendent tert-butyl groups. J Polym Sci Pol Phys. 2007;45(17):2481–96.

    Article  CAS  Google Scholar 

  23. Zhang W, Li H, Gao L, Zhang Q, Zhong W, Sui G, et al. Molecular simulation and experimental analysis on thermal and mechanical properties of carbon nanotube/epoxy resin composites with different curing agents at high-low temperature. Polym Composite. 2018;39:945–54.

    Article  Google Scholar 

  24. Ferdosian F, Yuan Z, Anderson M, Xu CC. Thermal performance and thermal decomposition kinetics of lignin-based epoxy resins. J Anal Appl Pyrol. 2016;119:124–32.

    Article  CAS  Google Scholar 

  25. Pan H, Sun G, Zhao T, Wang G. Thermal properties of epoxy resins crosslinked by an aminated lignin. Polym Eng Sci. 2015;55(4):924–32.

    Article  CAS  Google Scholar 

  26. Chen L, Wang Y-Z. A review on flame retardant technology in China: part 1—development of flame retardants. Polym Advan Technol. 2010;21(1):1–26.

    Google Scholar 

  27. van der Veen I, de Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88(10):1119–53.

    Article  PubMed  Google Scholar 

  28. Yang G, Wu W-H, Wang Y-H, Jiao Y-H, Lu L-Y, Qu H-Q, et al. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of epoxy resin. J Hazard Mater. 2019;366:78–87.

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Chen L, Xiao H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin. J Anal Appl Pyrol. 2019;139:104–13.

    Article  CAS  Google Scholar 

  30. Hu J, Shan J, Wen D, Liu X, Zhao J, Tong Z. Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins. Polym Degrad Stabil. 2014;109:218–25.

    Article  CAS  Google Scholar 

  31. Zang L, Wagner S, Ciesielski M, Mueller P, Doering M. Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym Adv Technol. 2011;22(7):1182–91.

    Article  CAS  Google Scholar 

  32. Sun D, Yao Y. Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polym Degrad Stabil. 2011;96(10):1720–4.

    Article  CAS  Google Scholar 

  33. Qian L, Ye L, Qiu Y, Qu S. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin. Polymer. 2011;52(24):5486–93.

    Article  CAS  Google Scholar 

  34. Jiang J, Li J, Gao Q. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Constr Build Mater. 2015;75:74–81.

    Article  Google Scholar 

  35. Jiang J, Li J, Hu J, Fan D. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Constr Build Mater. 2010;24(12):2633–7.

    Article  Google Scholar 

  36. Lu X, Dai P, Zhu X, Guo H, Que H, Wang D, et al. Thermal behavior and kinetics of enzymatic hydrolysis lignin modified products. Thermochim Acta. 2020;688:178593.

    Article  CAS  Google Scholar 

  37. Leu TS, Wang CS. Synergistic effect of a phosphorus-nitrogen flame retardant on engineering plastics. J Appl Polym Sci. 2004;92(1):410–7.

    Article  CAS  Google Scholar 

  38. Ma Z, Chen D, Gu J, Bao B, Zhang Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energ Convers Manage. 2015;89:251–9.

    Article  CAS  Google Scholar 

  39. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  40. Wei R, Xiang D, Long H, Xu C, Li J. Reduction of iron oxide by lignin: characteristics, kinetics and superiority. Energy. 2020;197:117203.

    Article  CAS  Google Scholar 

  41. Zhao Z, Cannon FS, Nieto-Delgado C. Co-pyrolysis characteristics and kinetics of lignin and collagen. J Anal Appl Pyrol. 2016;120:501–10.

    Article  CAS  Google Scholar 

  42. Rony AH, Kong L, Lu W, Dejam M, Adidharma H, Gasem KAM, et al. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis. Bioresour Technol. 2019;284:466–73.

    Article  CAS  PubMed  Google Scholar 

  43. Yang H, Ji G, Clough PT, Xu X, Zhao M. Kinetics of catalytic biomass pyrolysis using Ni-based functional materials. Fuel Process Technol. 2019;195:106145.

    Article  CAS  Google Scholar 

  44. Amini E, Safdari M-S, Weise DR, Fletcher TH. Pyrolysis kinetics of live and dead wildland vegetation from the Southern United States. J Anal Appl Pyrol. 2019;142:104613.

    Article  CAS  Google Scholar 

  45. Devnani GL, Sinha S. Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Compos Part B-Eng. 2019;166:436–45.

    Article  CAS  Google Scholar 

  46. Sharma P, Choudhary V, Narula AK. Effect of structure of aromatic imide-amines on curing behavior and thermal stability of diglycidyl ether of bisphenol-A. J Appl Polym Sci. 2008;107(3):1946–53.

    Article  CAS  Google Scholar 

  47. Ferdosian F, Yuan Z, Anderson M, Xu C. Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology. RSC Adv. 2014;4(60):31745–53.

    Article  CAS  Google Scholar 

  48. Nelson MI, Sidhu HS, Weber RO, Mercer GN. A dynamical systems model of the limiting oxygen index test. Anziam J. 2001;43:105–17.

    Article  Google Scholar 

  49. Bassilakis R, Carangelo RM, Wojtowicz MA. TG-FTIR analysis of biomass pyrolysis. Fuel. 2001;80(12):1765–86.

    Article  CAS  Google Scholar 

  50. Tang S, Qian L, Qiu Y, Dong Y. High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups. Polym Degrad Stabil. 2018;153:210–9.

    Article  CAS  Google Scholar 

  51. Wang P, Chen L, Xiao H, Zhan T. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin. Polym Degrad Stabil. 2020;171:109023.

    Article  CAS  Google Scholar 

  52. Chen R, Hu K, Tang H, Wang J, Zhu F, Zhou H. A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: flame retardance, thermal stability and pyrolysis behavior. Polym Degrad Stabil. 2019;166:334–43.

    Article  CAS  Google Scholar 

  53. Gu X, Liu C, Jiang X, Ma X, Li L, Cheng K, et al. Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. J Anal Appl Pyrol. 2014;106:177–86.

    Article  CAS  Google Scholar 

  54. Kim S-S, Kim J, Park Y-H, Park Y-K. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour Technol. 2010;101(24):9797–802.

    Article  CAS  PubMed  Google Scholar 

  55. Yan W, Islam S, Coronella CJ, Vasquez VR. Pyrolysis Kinetics of Raw/Hydrothermally Carbonized Lignocellulosic Biomass. Environ Prog Sustain. 2012;31(2):200–4.

    Article  CAS  Google Scholar 

  56. Zhao J, Wang X, Hu J, Liu Q, Shen D, Xiao R. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stabil. 2014;108:133–8.

    Article  CAS  Google Scholar 

  57. Zhan Z-h, Qiu K-q. Pyrolysis kinetics and TG-FTIR analysis of waste epoxy printed circuit boards. J Cent South Univ T. 2011;18(2):331–6.

    Article  CAS  Google Scholar 

  58. Benitez-Guerrero M, Lopez-Beceiro J, Sanchez-Jimenez PE, Pascual-Cosp J. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products. Thermochim Acta. 2014;581:70–86.

    Article  CAS  Google Scholar 

  59. Sahoo S, Seydibeyoglu MO, Mohanty AK, Misra M. Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenerg. 2011;35(10):4230–7.

    Article  CAS  Google Scholar 

  60. Ufodike CO, Eze VO, Ahmed MF, Oluwalowo A, Park JG, Okoli OI, et al. Evaluation of the inter-particle interference of cellulose and lignin in lignocellulosic materials. Int J Bio Macromol. 2020;147:762–7.

    Article  CAS  Google Scholar 

  61. Motaung TE, Anandjiwala RD. Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Ind Crop Prod. 2015;74:472–7.

    Article  CAS  Google Scholar 

  62. Ma Z, Sun Q, Ye J, Yao Q, Zhao C. Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS. J Anal Appl Pyrol. 2016;117:116–24.

    Article  CAS  Google Scholar 

  63. Brebu M, Vasile C. Thermal degradation of lignin-a review. Cell Chem Technol. 2010;44(9):353–63.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported from the National Natural Science Foundation of China (No. 21774059), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, the opening funding of Jiangsu Key Lab of Biomass based Green Fuels and Chemicals, and College Students’ Practice and Innovation Training Project (201910298011Z).

Funding

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Author information

Authors and Affiliations

Authors

Contributions

XL, XZ, PD, HMR, HG, HQ, DW, DL, TH and CX performed experiments. XL, ZL and XG conceived research, analyzed data and wrote the manuscript with help from all the others.

Corresponding authors

Correspondence to Zhenyang Luo or Xiaoli Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhu, X., Dai, P. et al. Thermal performance and thermal decomposition kinetics of a novel lignin-based epoxy resin containing phosphorus and nitrogen elements. J Therm Anal Calorim 147, 5237–5253 (2022). https://doi.org/10.1007/s10973-021-10950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10950-9

Keyword

Navigation