Skip to main content
Log in

Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: A comparative study of two force fields

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Molecular dynamic simulation was used to calculate the self-diffusion coefficients of ions in aqueous KCl solution. The simulations were performed for enough time (12 ns) in the form of all-atom to determine the accurate values of the self-diffusion coefficients. The values of the self-diffusion coefficients were calculated by Einstein equation. Two different force fields of Dang and Deublein were employed in the simulations, and we found that at low ion concentration (equal or less than 3mol/(kg of H2O)), the Dang force field is more accurate for prediction of the selfdiffusion coefficient of K+ ions and Deublein force field is more accurate for Cl ions. An Arrhenius type equation was used to model the temperature dependence of the self-diffusion coefficients and the diffusion activation energies at different ion concentrations were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ghaffari and A. Rahabar-Kelishami, J. Mol. Liq., 187, 238 (2013).

    Article  CAS  Google Scholar 

  2. R. Parthasarathi, J. Sun, T. Dutta, N. Sun, S. Pattathil, N. V. S. N. Murthy Konda, A. G. Peralta, B. A. Simmons and S. Singh, Biotechnol. Biofuels, 9, 1 (2016).

    Article  Google Scholar 

  3. A. A. Chilavo and L. Vlcek, Fluid Phase Equilib., 407, 84 (2015).

    Article  Google Scholar 

  4. H. Y. Lee, V. Manivannan and J. Goodenough, C. R. Acad. Sci.,Ser. IIc: Chim., 2, 565 (1999).

    CAS  Google Scholar 

  5. I. Edelman and J. Leibman, Am. J. Med., 27, 256 (1959).

    Article  CAS  Google Scholar 

  6. G. Shekhtar, M. Rai, N. P. Mahulkar and P. B. Karandikar, in Electronics and Communication Systems (I. ECS), 2nd International Conference on, Coimbatore (2015).

    Google Scholar 

  7. M. Kim, L. Oh and J. Kim, Phys. Chem. Chem. Phys., 17, 16367 (2015).

    Article  CAS  Google Scholar 

  8. M. H. Rausch, L. Hopf, A. Heller, A. Leipertz and A. P. Fröba, J. Phys. Chem. B, 117, 2429, (2013).

    Article  CAS  Google Scholar 

  9. L. Syam Sundar, E. Venkata Ramana, M. K. Singh and A. C.M. Sousa, Int. Commun. Heat Mass Transf., 56, 86 (2014).

    Article  CAS  Google Scholar 

  10. D. I. Sagdeev, M. G. Fomina, G. K. Mukhamedzyanov and I. M. Abdulagatov, Int. J. Thermophys., 34, 1 (2013).

    Article  CAS  Google Scholar 

  11. B. K. Dutta, Principle of Mass Transfer and Separation Process, P. I Learning Pvt. Ltd., New Dehli (2009).

    Google Scholar 

  12. T. K. Sherwood, R. L. Pigford and C. R. Wilke, Mass Transfer, M. Graw-Hill (1975).

    Google Scholar 

  13. R. Kimmich, W. Unrath, G. Schnur and E. Rommel, J. Magn. Reson., 91, 136 (1991).

    CAS  Google Scholar 

  14. A. Meyer, Phys. Rev. B, 81, 1 (2010).

    Article  Google Scholar 

  15. J. Lascombe, Molecular Motions in Liquids: Proceedings of the 24th Annual Meeting of the Société de Chimie Physique Paris-Orsay, 2-6. July 1972, Springer Science & Business Media (2012).

    Google Scholar 

  16. A. Anderko and M. M. Lencka, Ind. Eng. Chem. Res., 37, 2878 (1998).

    Article  CAS  Google Scholar 

  17. P. Wang and A. Anderko, Ind. Eng. Chem. Res., 42, 3495 (2003).

    Article  CAS  Google Scholar 

  18. Z. Chenyu, Y. K. Shin, A. C.T. van Duin, H. Fang and Z.-K. Liu, Acta Mater., 83, 102 (2015).

    Article  Google Scholar 

  19. N. Zhang, Z. Shen, C. Chen, G. He and C. Hao, J. Mol. Liq., 203, 90 (2015).

    Article  CAS  Google Scholar 

  20. F. Landuzzi, L. Pasquini, S. Giusepponi, M. Celino, A. Montone, P. L. Palla and F. Cleri, J. Mater. Sci., 50, 2502 (2015).

    Article  CAS  Google Scholar 

  21. J. N. Israelachvili, Intermolecular and Surface Forces, Elsevier Science (2015).

    Google Scholar 

  22. Z. Li, O. Borodin, G. D. Smith and D. Bedrov, J. Phys. Chem. B, 119, 3085 (2015).

    Article  CAS  Google Scholar 

  23. K. Xu, X. Ji, C. Chen, H. Wan, L. Miao and J. Jiang, Electrochim. Acta, 166, 142 (2015).

    Article  CAS  Google Scholar 

  24. N. N. Rajput, X. Qu, N. Sa, A. K. Burrell and K. A. Perrson, J. Am. Chem. Soc., 137, 3411 (2015).

    Article  CAS  Google Scholar 

  25. H. Kasemägi, M. Ollikainen, D. Brandell and A. Abloo, Electrochim. Acta, 175, 47 (2015).

    Article  Google Scholar 

  26. M. Duvail, A. Villard, T.-N. Nguyen and J.-F. Dufrêche, J. Phys. Chem. B, 119, 11184 (2015).

    Article  CAS  Google Scholar 

  27. K. Meier, A. Laesecke and S. Kabelac, Int. J. Thermophys., 22, 161 (2001).

    Article  CAS  Google Scholar 

  28. F. A. Furtado, C. R.A. Abreu and F. W. Tavares, A. ChE. J., 61, 2881 (2015).

    CAS  Google Scholar 

  29. G. Guevara-Carrion, C. Nieto-Draghi, J. Vrabec and H. Hasse, J. Phys. Chem. B, 112, 16664 (2008).

    Article  CAS  Google Scholar 

  30. L. Wei-Zhong, C. Cong and Y. Jian, Heat Tran. Asian Res., 37, 86 (2008).

    Article  Google Scholar 

  31. L. X. Dang and B. M. Pettitt, J. Phys. Chem., 91, 3349 (1987).

    Article  CAS  Google Scholar 

  32. H. Berendsen, J. Grigera and T. Straatsma, J. Phys. Chem., 91, 6269 (1987).

    Article  CAS  Google Scholar 

  33. W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey and M. Klein, J. Chem. Phys., 79, 926 (1983).

    Article  CAS  Google Scholar 

  34. W. L. Jorgensen and J.D. Madura, Mol. Phys., 56, 1381 (1985).

    Article  CAS  Google Scholar 

  35. J. O. Sindt, A. J. Alexander and P. J. Camp, J. Phys. Chem. B, 118, 9404 (2014).

    Article  CAS  Google Scholar 

  36. S. Deublein, J. Vrabec and H. Hasse, J. Chem. Phys., 136, 1 (2012).

    Article  Google Scholar 

  37. T. Schnabel, Molecular Modeling and Simulation of Hydrogen Bonding Pure Fluids and Mixtures, Logos Verlag, Berlin (2008).

    Google Scholar 

  38. P. Mark and L. Nilsson, J. Phys. Chem. A, 105, 9954 (2001).

    Article  CAS  Google Scholar 

  39. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press (1989).

    Google Scholar 

  40. R. Zhou, Molecular Modeling at the Atomic Scale: Methods and Applications in Quantitative Biology, CRC Press, NewYork (2014).

    Google Scholar 

  41. S. Plimpton, J. Comput. Phys., 117, 1 (1995).

    Article  CAS  Google Scholar 

  42. J. M. Seminario, Design and Applications of Nanomaterials for Sensors, Springer Netherlands (2014).

    Book  Google Scholar 

  43. S. Al Ghafri, G. C. Maitland and J. Trusler, Chem. Eng. Data, 57, 1288 (2012).

    Article  Google Scholar 

  44. D. Tabor, Gases, Liquids and Solids: And Other States of Matter, Cambridge University Press, Cambridge (1991).

    Book  Google Scholar 

  45. R. Catlow, S. C. Parker and M. P. Allen, Computer Modelling of Fluids Polymers and Solids, Springer Netherlands (2012).

    Google Scholar 

  46. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci and A. K. Soper, J. Phys. Chem. B, 111, 13570 (2007).

    Article  CAS  Google Scholar 

  47. S. Chowdhuri and A. Chandra, J. Chem. Phys., 115, 3732 (2001).

    Article  CAS  Google Scholar 

  48. A. M. Friedman and J.W. Kennedy, J. Am. Chem. Soc., 77, 4499 (1955).

    Article  CAS  Google Scholar 

  49. R. Mills, J. Phys. Chem., 61, 1631 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Movahedirad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeilbeig, M.A., Movahedirad, S. Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: A comparative study of two force fields. Korean J. Chem. Eng. 34, 977–986 (2017). https://doi.org/10.1007/s11814-016-0367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0367-0

Keywords

Navigation