Skip to main content
Log in

MD Simulation and Analysis of the Pair Correlation Functions, Self-Diffusion Coefficients and Orientational Correlation Times in Aqueous KCl Solutions at Different Temperatures and Concentrations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this study, we investigate some structural and dynamical properties of aqueous KCl solutions at different temperatures and concentrations. We study a 1.6 mol·kg–1 aqueous KCl solution at five temperatures and five concentrations at ambient conditions only. Molecular dynamics simulations with the flexible SPC water model were conducted to characterize all partial pair correlation functions, the velocities auto-correlation ones, and the dielectric constants. The analysis of the water pair correlation functions shows a disruption of the H-bond network and a decrease of the oxygen-hydrogen coordination number as temperature or salt concentration increases. The increase of each parameter favors the exchange of molecules between the first and the second hydration shells. Ions pair correlation functions show principally that the fraction of K+-Cl contact ion pairs increases and that of separated ion pairs decreases with increasing temperature or concentration. For all particles, the values of the calculated self-diffusion coefficients rise with temperature and fall with salt concentration. The self-diffusion coefficients of K+ and Cl tend to towards each other at high concentration. Temperature or salt concentration causes a drop in the dielectric constant. For all studied temperatures or salt concentrations, the calculated ratio of the orientational correlation times τ12 for the OH vector indicates that the motion of water molecules can be accounted for by an angular jumps model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Wiggins, P.M.: Role of water in some biological processes. Microbiol. Rev. 54, 432–449 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinson, R.A., Stokes, R.H.: Electrolyte solutions, 2nd edn. Butterworths, London (1959)

    Google Scholar 

  3. Whitfield, T.W., Varma, S., Harder, E., Lamoureux, G., Rempe, S.B., Roux, B.: Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. J. Chem. Theory Comput. 3, 2068–2082 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mason, P.E., Tavagnacco, L., Saboungi, M..-L.., Hansen, T., Fischer, H.E., Neilson, G.W., Ichiye, T., Brady, J.W.: Molecular dynamics and neutron scattering studies of potassium chloride in aqueous solution. J. Phys. Chem. B. 123, 10807–10813 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Lin, H., An, S., Li, S., Li, F., Yuan, J.: Concentration-dependent structure of KCl aqueous solutions under weak magnetic field from the X-ray diffraction and molecular dynamics simulation. J. Mol. Struct. 1201, 127130 (2020)

    Article  CAS  Google Scholar 

  6. Soniat, M., Pool, G., Franklin, L., Rick, S.W.: Ion association in aqueous solution. Fluid. Phase. Equilib. 407, 31–38 (2016)

    Article  CAS  Google Scholar 

  7. Mohorič, T., Bren, U.: Microwave irradiation affects ion pairing in aqueous solutions of alkali halide salts. J. Chem. Phys. 146, 044504 (2017)

    Article  ADS  PubMed  Google Scholar 

  8. Bae Gee, M., Cox, N.R., Jiao, Y., Bentenitis, N., Weeerasinghe, S., Smith, P.E.: A kirkwood-buff derived force field for aqueous Alkali Halides. J. Chem. Theory Comput. 7, 1369–1380 (2011)

    Article  Google Scholar 

  9. Giri, A., Spohr, E.: Cluster formation of NaCl in bulk solutions: arithmetic vs. geometric combination rules. J. Mol. Liq. 228, 63–70 (2017)

    Article  CAS  Google Scholar 

  10. Chowdhuri, S., Chandra, A.: Molecular dynamics simulations of aqueous NaCl and KCl solutions: effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules. J. Chem. Phys. 115, 3732–3741 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Chandra, A.: Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys. Rev. Lett. 85, 768–771 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ghaffari, A., Rahbar-kelishami, A.: MD simulation and evaluation of the self-diffusion coefficients in aqueous NaCl solutions at different temperatures and concentrations. J. Mol. Liq. 187, 238–245 (2013)

    Article  CAS  Google Scholar 

  13. Lowry, H.H.: The significance of the dielectric constant of a mixture. J. Franklin Inst. 203, 413–439 (1927)

    Article  CAS  Google Scholar 

  14. Hasted, J.B., Ritson, D.M., Collie, C.H.: Dielectric properties of aqueous ionic solutions. Parts I and II. J. Chem. Phys 16, 1–21 (1948)

    Article  ADS  CAS  Google Scholar 

  15. Zasetskya, A.Y., Svishchev, I.M.: Dielectric response of concentrated NaCl aqueous solutions: molecular dynamics simulations. J. Chem. Phys. 115, 1448–1454 (2001)

    Article  ADS  Google Scholar 

  16. Haggis, G.H., Hasted, J.B., Buchanan, T.J.: The dielectric properties of water in solutions. J. Chem. Phys. 20, 1452–1465 (1952)

    Article  ADS  CAS  Google Scholar 

  17. Glueckauf, E.: Bulk dielectric constant of aqueous electrolyte solutions. Trans. Faraday Soc. 60, 1637–1645 (1964)

    Article  CAS  Google Scholar 

  18. Rinne, K.F., Gekle, S., Netz, R.R.: Dissecting ion-specific dielectric spectra of sodium-halide solutions into salvation water and ionic contributions. J. Chem. Phys. 141, 214502 (2014)

    Article  ADS  PubMed  Google Scholar 

  19. Kirkwood, J.G.: The dielectric polarization of polar liquids. J. Chem. Phys. 7, 911–919 (1939)

    Article  ADS  CAS  Google Scholar 

  20. Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Verlet, L.: Comyuter “Exyeriments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  ADS  CAS  Google Scholar 

  22. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992)

    Article  ADS  CAS  Google Scholar 

  23. de Leeuw, S.W., Perram, J.W., Smith, E.R.: Dielectric constants boundary conditions. I. Lattice sums and simulation of electrostatic systems in periodic. Proc. R. Soc. Lond. 373, 27–56 (1980)

    ADS  Google Scholar 

  24. Lyubartsev, A.P., Laaksonen, A.: M. DynaMix—a scalable portable parallel MD simulation package for arbitrary molecular mixtures. Comput. Phys. Commun. 128, 565–589 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Oxford University Press, Oxford (1987)

    Google Scholar 

  26. Hansen, J.P., McDonald, I.R.: Theory of simple liquids. Academic, London (1976)

    Google Scholar 

  27. Toukan, K., Rahman, A.: Molecular-dynamics study of atomic motions in water. Phys. Rev. B 31, 2643–2648 (1985)

    Article  ADS  CAS  Google Scholar 

  28. Soper, A.K., Weckström, K.: Ion solvation and water structure in potassium halide aqueous solutions. Biophys. Chem. 124, 180–191 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Ohtaki, H., Fukushima, N.: Nucleation processes of NaCl and CsF crystals from aqueous solutions studied by molecular dynamics simulations. Pure Appl. Chem. 63, 1743–1748 (1991)

    Article  CAS  Google Scholar 

  30. Pagnotta, S.E., Ricci, M.A., Bruni, F., McLain, S., Magazu, S.: Water structure around trehalose. Chem. Phys. 345, 195–163 (2008)

    Article  Google Scholar 

  31. Lyubertsev, A.P., Laaksonen, A.: Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation. J. Phys. Chem. 100, 16410–16418 (1996)

    Article  Google Scholar 

  32. Hess, W., Klein, R.: Dynamical properties of colloidal systems. Physica 105A, 552–576 (1981)

    Article  ADS  CAS  Google Scholar 

  33. Hansen, J.P., McDonald, I.R.: Theory of simple liquids, 2nd edn. Academic Press, London (1986)

    Google Scholar 

  34. Debye, P.: Polar Molecules, p. 89. The Chemical Catalog Company, Inc., New York (1929)

    Google Scholar 

  35. Seki, K., Bagchi, B., Tachiya, M.: Orientational relaxation in a dispersive dynamic medium: generalization of the Kubo-Ivanov-Anderson jump-diffusion model to include fractional environmental dynamics. Phys. Rev. E 77, 031505 (2008)

    Article  ADS  CAS  Google Scholar 

  36. Neumann, M.: Dipole moment fluctuation formulas in computer simulations of polar systems. Mol. Phys. 50, 841–858 (1983)

    Article  ADS  CAS  Google Scholar 

  37. Galicia-Andrés, E., Dominguez, H., Pizio, O.: Temperature dependence of the microscopic structure and density anomaly of the SPC/E and TIP4P-Ew water models Molecular dynamics simulation results. Condens. Matter. Phys. 18, 13603 (2015)

    Article  ADS  Google Scholar 

  38. Radnai, T., Ohtaki, H.: X-ray diffraction studies on the structure of water at high temperatures and pressures. Molec. Phys. 87, 103–121 (1996)

    Article  ADS  CAS  Google Scholar 

  39. Gallo, P., Corradini, D., Rovere, M.: Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: a test of the structure making and breaking concept. Phys. Chem. Chem. Phys. 13, 19814–19822 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Postorino, P., Tromp, R.H., Ricci, M.-A., Soper, A.K., Neilson, G.W.: The interatomic structure of water at supercritical temperatures. Nature 366, 668–670 (1993)

    Article  ADS  CAS  Google Scholar 

  41. Ortega, J., Lewis, J.P., Sanky, O.F.: First principles simulations of fluid water: the radial distribution functions. J. Chem. Phys. 106, 3696–3702 (1997)

    Article  ADS  CAS  Google Scholar 

  42. Ohtomo, N., Arakawa, K.: Neutron diffraction study of aqueous ionic solutions. II. Aqueous solutions of sodium chloride and potassium chloride. Bull. Chem. Soc. Jpn. 53, 1789–1794 (1980)

    Article  CAS  Google Scholar 

  43. Mancinelli, R., Botti, A., Bruni, F., Ricci, M.A., Sopper, A.K.: Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111, 13570–13577 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. Paschek, D., Geiger, A.: Simulation study on the diffusive motion in deeply supercooled water. J. Phys. Chem. B 103, 4139–4146 (1999)

    Article  CAS  Google Scholar 

  45. Ravichandran, S., Bagchi, B.: Molecular dynamics simulations of orientational relaxation in dipolar lattice: lack of diffusive decay for second and higher rank correlation functions. J. Phys. Chem. 98, 11242–11245 (1994)

    Article  CAS  Google Scholar 

  46. Li, F., Li, S., Zhuang, X., Yuan, J.: Study on the structure of potassium chloride aqueous solution by molecular dynamics and raman spectroscopy methods. J. Chem. Eng. Trans. 61, 769–774 (2017)

    Article  Google Scholar 

  47. Gallo, P., Corradini, D., Rovere, M.: Do ions affect the structure of water? The case of potassium halides. J. Mol. Liq. 189, 52–56 (2014)

    Article  CAS  Google Scholar 

  48. Laudernet, Y., Cartailler, T., Turq, P., Ferrario, M.: A microscopic description of concentrated potassium fluoride aqueous solutions by molecular dynamics simulation. J. Phys. Chem. B 107, 2354–2361 (2003)

    Article  CAS  Google Scholar 

  49. Bouazizi, S., Nasr, S., Jaîdane, N., Bellusen-Funnel, M.-C.: Local order in aqueous NaCl solutions and pure water: X-ray scattering and molecular dynamics simulations study. J. Phys. Chem. B 110, 23515–23523 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. Bouazizi, S., Nasr, S.: Structural investigations of high concentrated aqueous LiCl solutions: X-ray scattering and MD simulations approach. J. Mol. Struct. 875, 121–129 (2008)

    Article  ADS  CAS  Google Scholar 

  51. Hertz, H.G., Mills, R.: The effect of structure on self-diffusion in concentrated electrolytes : relationship between the water and ionic self-diffusion coefficients. J. Chim. Phys. 73, 499–508 (1976)

    Article  CAS  Google Scholar 

  52. Hertz, H.G., Holz, M., Mills, R.: The effect of structure on ion self-diffusion in concentrated electrolyte solutions. J. Chim. Phys. 71, 1355–1362 (1974)

    Article  CAS  Google Scholar 

  53. Migliore, M., Fornili, S.L., Spohr, E., Heinzinger, K.: Molecular dynamics study of a KCl aqueous solution: dynamical results. Z. Naturforsch. 42a, 227–230 (1987)

    Article  ADS  Google Scholar 

  54. Bouazizi, S., Nasr, S.: Self-diffusion coefficients and orientational correlation times in aqueous NaCl solutions: complementarity with structural investigations. J. Mol. Liq. 162, 78–83 (2011)

    Article  CAS  Google Scholar 

  55. Chandra, A.: Static dielectric constant of aqueous electrolyte solutions: Is there any dynamic contribution? J. Chem. Phys. 113, 903–905 (2000)

    Article  ADS  CAS  Google Scholar 

  56. Levy, A., Andelman, D., Orland, H.: Dielectric constant of ionic solutions: a field-theory approach. Phys. Rev. Lett. 108(22), 227801 (2012). https://doi.org/10.1103/PhysRevLett.108.227801

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Liszi, J., Felinger, A., Kristóf, E.H.: Static relative permittivity of electrolyte solutions. Electrochim. Acta 33, 1191–1194 (1988)

    Article  CAS  Google Scholar 

  58. Seal, S., Doblhoff-Dier, K., Meyer, J.: Dielectric decrement for aqueous NaCl solutions: effect of ionic charge scaling in non polarizable water force fields. J. Phys. Chem. B 123, 9912–9921 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Salah Nasr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no conflicts of interest to declare; we certify that the submission is original work and is not under review at any other publication. We certify that they have no affiliations with or involvement in any organization or entity with any financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazizi, S., Nasr, S. & Bellissent-Funel, MC. MD Simulation and Analysis of the Pair Correlation Functions, Self-Diffusion Coefficients and Orientational Correlation Times in Aqueous KCl Solutions at Different Temperatures and Concentrations. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01366-8

Keywords

Navigation