Skip to main content
Log in

Magnetic nanocomposite of multi-walled carbon nanotube as effective adsorbent for methyl violet removal from aqueous solutions: Response surface modeling and kinetic study

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Magnetic nanocomposite of multi-walled carbon nanotube (m-MWCNT) was synthesized for adsorptive removal of methyl violet (MV) from aqueous solutions. The experiments were conducted using a central composite design (CCD) with the variables of adsorbent dosage (0.4-1.2 g/L), solution pH (3-9), contact time (10-42 min) and ionic strength (0.02-0.1mol L−1). Regression analysis showed good fit of the experimental data to a quadratic response surface model whose statistical significance was verified by analysis of variance. By applying the desirability functions, optimum conditions of the process were predicted as adsorbent dosage of 0.99g/L, pH=4.92, contact time of 40.98 minutes and ionic strength of 0.04 mol L−1 to achieve MV removal percentage of 101.19. Experimental removal efficiency of 99.51% indicated that CCD along with the desirability functions can be effectively applied for optimizing MV removal by m-MWCNT. Based on the study, the adsorption process followed Langmuir isotherm model and pseudo-second-order kinetic model could realistically describe the dye adsorption onto m-MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO/UNICEF, Global Water Supply and Sanitation Assessment Report 2000, WHO, Geneva (2000).

    Google Scholar 

  2. M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, J. Hazard. Mater., 177, 70 (2010).

    Article  CAS  Google Scholar 

  3. B. Amith, D. Sivanesan, K. Kannan and C. Tapan, Appl. Microbiol. Biotechnol., 74, 1145 (2007).

    Article  Google Scholar 

  4. A. K. Samanta and P. Agarwal, J. Fiber Text. Res., 34, 384 (2009).

    CAS  Google Scholar 

  5. P. Monash and G. Pugazhenthi, Adsorption, 15, 390 (2009).

    Article  CAS  Google Scholar 

  6. M. T. Yagub, T. K. Sen and H. Ang, Water Air Soil Pollut., 223, 5267 (2012).

    Article  CAS  Google Scholar 

  7. H. A. Mekkawy, M. O. Ali and A. M. El-Zawahry, Toxicol. Lett., 95, 155 (1998).

    Article  Google Scholar 

  8. D. A. Oxspring, G. McMullan, W. F. Smyth and R. Marchant, Biotechnol. Lett., 18, 527 (1996).

    Article  CAS  Google Scholar 

  9. Q. Zhang, G. Meng, J. Wu, D. Li and Z. Liu, Opt. Mater., 46, 52 (2015).

    Article  Google Scholar 

  10. S. S. Moghaddam, M. R. A. Moghaddam and M. Arami, J. Hazard. Mater., 175, 651 (2010).

    Article  Google Scholar 

  11. C.-H. Lin, C.-H. Gung, J. J. Sun and S.-Y. Suen, J. Membr. Sci., 471, 285 (2014).

    Article  CAS  Google Scholar 

  12. M. Wawrzkiewicz, Chem. Eng. J., 217, 414 (2013).

    Article  CAS  Google Scholar 

  13. A. Ozcan and A. S. Ozcan, J. Hazard. Mater., 125, 252 (2005).

    Article  Google Scholar 

  14. L. Zhong, C. Lee and F. Haghighat, J. Hazard. Mater., 243, 340 (2012).

    Article  CAS  Google Scholar 

  15. O. Duman, S. Tunc and T. G. Polat, Micropor. Mesopor. Mater., 210, 176 (2015).

    Article  CAS  Google Scholar 

  16. E. Ayranci and O. Duman, Sep. Sci. Technol., 44, 3735 (2009).

    Article  CAS  Google Scholar 

  17. O. Duman, S. Tunç and T. G. Polat, Appl. Clay Sci., 109-110, 22 (2015).

    Article  CAS  Google Scholar 

  18. S. Tunç, O. Duman and T. Gürkan, Ind. Eng. Chem. Res., 52, 1414 (2013).

    Article  Google Scholar 

  19. S. Tunç, T. Gürkan and O. Duman, Chem. Eng. J., 181-182, 431 (2012).

    Article  Google Scholar 

  20. W. W. Tang, G. M. Zeng, J. L. Gong, Y. Liu, X. Y. Wang, Y. Y. Liu, Z. F. Liu, L. Chen, X. R. Zhang and D. Z. Tu, Chem. Eng. J., 211, 470 (2012).

    Article  Google Scholar 

  21. L. Maggini, J.-M. Raquez, R. Marega, J. Jensen Ahrens, F. Pineux, F. Meyer, P. Dubois and D. Bonifazi, Chem. Sus. Chem., 6, 367 (2013).

    Article  CAS  Google Scholar 

  22. L. Ai, H. Huang, Z. Chen, X. Wei and J. Jiang, Chem. Eng. J., 156, 243 (2010).

    Article  CAS  Google Scholar 

  23. W. Konicki, I. Pelech, E. Mijowska and I. Jasinska, Chem. Eng. J., 210, 87 (2012).

    Article  CAS  Google Scholar 

  24. Y. Liu, W. Jiang, Y. Wang, X. J. Zhang, D. Song and F. S. Li, J. Magn. Magn. Mater., 321, 408 (2009).

    Article  CAS  Google Scholar 

  25. R. Sivashankar, A. B. Sathya, K. Vasantharaj and V. Sivasubramanian, Environ. Nanotechnol. Monit. Manage., 1-2, 36 (2014).

    Article  Google Scholar 

  26. S. S. Banerjee and D. H. Chen, J. Hazard. Mater., 147, 792 (2007).

    Article  CAS  Google Scholar 

  27. J.-L. Gong, B. Wang, G.-M. Zeng, Ch.-P. Yang, Ch.-G. Niu, Q.-Y. Niu, W.-J. Zhou, and Y. Liang, J. Hazard. Mater., 164, 1517 (2009).

    Article  CAS  Google Scholar 

  28. T. Madrakian, A. Afkhami, M. Ahmadi and H. Bagheri, J. Hazard. Mater., 196, 109 (2011).

    Article  CAS  Google Scholar 

  29. T. Madrakian, A. Afkhami, N. Rezvani Jalal and M. Ahmadi, Sep. Sci. Technol., 48, 2638 (2013).

    Article  CAS  Google Scholar 

  30. N. Dalali, M. Habibizadeh, K. Rostamizadeh and S. Nakisa, Asia Pac. J. Chem. Eng., 9, 552 (2014).

    CAS  Google Scholar 

  31. Ş. S. Bayazit, Sep. Sci. Technol., 49, 1389 (2014).

    Article  CAS  Google Scholar 

  32. O. Duman, S. Tunç, T. G. Polat and B. K. Bozoğlan, Carbohydr. Polym., 147, 79 (2016).

    Article  CAS  Google Scholar 

  33. O. Duman, S. Tunç, B. K. Bozoğlan and T. G. Polat, J. Alloy. Compd., 687, 370 (2016).

    Article  CAS  Google Scholar 

  34. K. Ravikumar, K. S. Krishnan, S. Ramalingam and K. Balu, Dyes Pigm., 72, 66 (2007).

    Article  Google Scholar 

  35. K. Ravikumar, S. Ramalingam, S. Krishnan and K. Balu, Dyes Pigments, 70, 18 (2006).

    Article  CAS  Google Scholar 

  36. J. N. Sahu, J. Acharya and B. C. Meikap, J. Hazard. Mater., 172, 818 (2009).

    Article  CAS  Google Scholar 

  37. G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surfaces, Wiley, Minnesota (1987).

    Google Scholar 

  38. N. Draper and J. A. John, Technometrics, 30, 423 (1988).

    Article  Google Scholar 

  39. K. Murugesan, A. Dhamija, I. Nam, Y. Kim and Y. Chang, Dyes Pigments, 75, 176 (2007).

    Article  CAS  Google Scholar 

  40. E. Ch. Khoo, S. T. Ong, Y. T. Hung and S. T. Ha, Desalin. Water Treat., 51, 7109 (2013).

    Article  CAS  Google Scholar 

  41. A. Olad, F. Farshi Azhar, M. Shargh and S. Jharfi, Polym. Eng. Sci., 54, 1595 (2014).

    Article  CAS  Google Scholar 

  42. F. Bandari, F. Safa and Sh. Shariati, Arab. J. Sci. Eng., 40, 3363 (2015).

    Article  CAS  Google Scholar 

  43. S. Sadaf and H. N. Bhatti, Desalin. Water Treat., 57, 11773 (2016).

    Article  CAS  Google Scholar 

  44. R. D. Lillie and H. J. Conn, Conn’s biological stains: A handbook on the nature and uses of the dyes employed in the biological laboratory, Baltimore, Williams & Wilkins (1977).

    Google Scholar 

  45. P. Li, Y. J. Su, Y. Wang, B. Liu and L. M. Sun, J. Hazard. Mater., 179, 43 (2010).

    Article  CAS  Google Scholar 

  46. K. Petcharoen and A. Sirivat, Mater. Sci. Eng. B, 177, 421 (2012).

    Article  CAS  Google Scholar 

  47. M. Evans, Optimization of Manufacturing Processes: A Response Surface Approach, Carlton House Terrace, London (2003).

    Google Scholar 

  48. L. C. A. Oliveira, R. V. R. A. Rios, J. D. Fabris, K. Sapag, V. K. Garg and R. M. Lago, Appl. Clay Sci., 22, 169 (2003).

    Article  CAS  Google Scholar 

  49. M. A. Legodi and D. DeWaal, Dyes Pigments, 74, 161 (2007).

    Article  CAS  Google Scholar 

  50. S. Goyanes, G. R. Rubiolo, A. Salazar, A. Jimeno, M. A. Corcuera and I. Mondragon, Diamond Relat. Mater., 16, 412 (2007).

    Article  CAS  Google Scholar 

  51. R. D. Waldron, Phys. Rev., 99, 1727 (1955).

    Article  CAS  Google Scholar 

  52. M. Ma, Y. Zhang, W. Yu, H. Y. Shen, H. Q. Zhang and N. Gu, Colloids and Surfaces A: Physicochem. Eng. Aspects, 212, 219 (2003).

    Article  CAS  Google Scholar 

  53. Z. M. Gao, T. H. Wu and S. Y. Peng, Acta Phys. Chim. Sin., 11, 395 (1995).

    CAS  Google Scholar 

  54. K. Yetilmezsoy, S. Demirel and R. J. Vanderbei, J. Hazard. Mater., 171, 551 (2009).

    Article  CAS  Google Scholar 

  55. G. Alberghina, R. Bianchini, M. Fichera and S. Fisichella, Dyes Pigments, 46, 129 (2000).

    Article  CAS  Google Scholar 

  56. G. Derringer and R. Suich, J. Qual. Technol., 12, 214 (1980).

    Google Scholar 

  57. Design expert statistical software, Stat-Ease, Inc., 2021 E. Hennepin Avenue, Suite 480, Minneapolis, MN 55413-2726, USA (2005).

  58. S. Lagergren and K. Sven, Vetenskakad. Handl., 24, 1 (1898).

    Google Scholar 

  59. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  60. W. J. Weber and J. C. Morris, J. Sanit. Engg. Div. ASCE, 89, 31 (1963).

    Google Scholar 

  61. K. Kannan and M. M. Sundaram, Dyes Pigments, 51, 25 (2001).

    Article  CAS  Google Scholar 

  62. S. J. Allen, G. Mckay and K. Y. H. Khader, Environ. Pollut., 56, 39 (1989).

    Article  CAS  Google Scholar 

  63. V. J. P. Poots, G. McKay and J. J. Healy, J. Water Pollut. Control Fed., 50, 926 (1978).

    CAS  Google Scholar 

  64. B. H. Hameed, J. Hazard. Mater., 166, 233 (2009).

    Article  CAS  Google Scholar 

  65. H. Z. Freundlich, J. Phys. Chem., 57A, 385 (1906).

    Google Scholar 

  66. M. I. Tempkin and V. Pyzhev, Acta Physiochim., USSR 12, 327 (1940).

    Google Scholar 

  67. K. Y. Foo and B. H. Hameed, Chem. Eng. J., 156, 2 (2010).

    Article  CAS  Google Scholar 

  68. S. M. Musyoka, H. Mittal, S. B. Mishra and J. C. Ngila, Int. J. Biol. Macromol., 65, 389 (2014).

    Article  CAS  Google Scholar 

  69. S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr and S. Pal, ACS Appl. Mater. Interfaces, 6, 4766 (2014).

    Article  CAS  Google Scholar 

  70. H. Mittal, V. Kumar, Saruchi and S. S. Ray, Int. J. Biol. Macromol., 89, 1 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Safa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehyaee, M., Safa, F. & Shariati, S. Magnetic nanocomposite of multi-walled carbon nanotube as effective adsorbent for methyl violet removal from aqueous solutions: Response surface modeling and kinetic study. Korean J. Chem. Eng. 34, 1051–1061 (2017). https://doi.org/10.1007/s11814-016-0353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0353-6

Keywords

Navigation