Skip to main content
Log in

Bio-solubilization of the untreated low rank coal by alkali-producing bacteria isolated from soil

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Coal is a hydrocarbon-rich fossil fuel considered as a possible replacement for petroleum as a feedstock for the production of fuel and valuable chemicals. In this study, bacteria capable of solubilizing untreated low rank coal were isolated from soil. A total of 19 microorganisms were isolated from soil enriched in MR medium with coal and were identified based on 16S rRNA sequencing. The identified soil isolates belonging to the genera Citricoccus, Comamonas, Cupriavidus, Sphingomonas, and Sphingopyxis were screened based on their growth in the chemically defined MR medium containing different concentrations of coal. Among the identified microbial strains, Cupriavidus necator S2A2, Sphingopyxis ginsengisoli S2B14 and Sphingomonas sp. S2B18 were further characterized for their ability to degrade low-rank coal. Cupriavidus necator S2A2, Sphingopyxis ginsengisoli S2B14 and Sphingomonas sp. S2B18 were found to solubilize untreated low-rank coal as indicated by the release of solubilized coal products detected at OD450 when they were grown in LB medium containing 1% coal. Sphingomonas sp. S2B18 showed the highest coal solubilization activity, based on the high absorbance of its culture supernatant (0.190). Although laccase-like activity was not detected in these strains when tested for RBBR dye degradation, increase in the pH of the culture medium up to 8.25- 8.34 was observed. This may be attributed to the excretion of alkaline substances in the culture medium. Since biosolubilization of coal by microorganisms is a good alternative for the chemical conversion of coal, microorganisms screened in this study can be potentially used as biological catalysts for the conversion of coal into valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shafiee and E. Topal, Energy Policy, 37, 181 (2009).

    Article  Google Scholar 

  2. H. H. Schobert and C. Song, Fuel, 81, 15 (2002).

    Article  CAS  Google Scholar 

  3. R. M. Fakoussa and M. Hofrichter, Appl. Microbiol. Biotechnol., 52, 25 (1999).

    Article  CAS  Google Scholar 

  4. M. Radke, H. Willsch, D. Leythaeuser and M. Teichmüller, Geochimica et Cosmochimica Acta, 46, 1831 (1982).

    Article  CAS  Google Scholar 

  5. M. Hofrichter and R. Fakoussa, Lignin, Humic Substances and Coal, 1, 393 (2001).

    CAS  Google Scholar 

  6. L. M. Sekhohola, E. E. Igbinigie and A. K. Cowan, Biodegradation, 24, 305 (2013).

    Article  CAS  Google Scholar 

  7. C. F. Gockay, N. Kolankaya and F.B Dilek, Fuel, 80, 1421 (2001).

    Article  Google Scholar 

  8. U. Hölker, H. Schmiers, S. Große, M. Winkelhöfer, M. Polsakiewicz, S. Ludwig, J. Dohse and M. Höfer, J. Ind. Microbiol. Biotechnol., 28, 207 (2002).

    Article  Google Scholar 

  9. O. I. Klein, N.A. Kulikova, A. I. Konstantinov, T.V. Fedorova, E.O. Landesman and O.V. Koroleva, Appl. Biochem. Microbiol., 49, 287 (2013).

    Article  CAS  Google Scholar 

  10. O. I. Klein, N.A. Kulikova, E.V. Stepanova, O. I. Filippova, T.V. Fedorova, L. G. Maloshenok, I. S. Filimonov and O.V. Koroleva, Appl. Biochem. Microbiol., 50, 730 (2014).

    Article  CAS  Google Scholar 

  11. F. Jiang, Z. Li, Z. Lv, T. Gao, J. Yang, Z. Qin and H. Yuan, Fuel, 103, 639 (2013).

    Article  CAS  Google Scholar 

  12. N. Valero, L. Gómez, M. Pantoja and R. Ramirez, Braz._J. Microbiol., 45, 911 (2014).

    Article  CAS  Google Scholar 

  13. N. H. Hazrin-Chong, C. E. Marjo, T. Das, A. M. Rich and M. Manefield, Appl. Microbiol. Biotechnol., 98, 6443 (2014).

    Article  CAS  Google Scholar 

  14. I. Romanowska, B. Strzelecki and S. Bielecki, Fuel Process. Technol., 131, 430 (2015).

    Article  CAS  Google Scholar 

  15. J. S. Simmons. J. Infect. Dis., 39, 209 (1926).

    Article  Google Scholar 

  16. P. L.D. Oliveira, M. C.T. Duarte, A. N. Ponezi and L.R. Durrant, Braz. J. Microbiol., 40, 818 (2009).

    Article  Google Scholar 

  17. J. Su, P. Bao, T. Bai, L. Deng, H. Wu, F. Liu and J. He, PloS One, 8, e60573 (2013).

    Article  CAS  Google Scholar 

  18. V. Madhavi and S. S. Lele, BioResources, 4, 1694 (2009).

    Google Scholar 

  19. N. S. Makkar and L. E. Casida, Int. J. Syst. Bacteriol., 37, 323 (1987).

    Article  Google Scholar 

  20. L. E. Casida, Appl. Environ. Microbiol., 54, 2161 (1988).

    CAS  Google Scholar 

  21. W.Y. Ryu, M.Y. Jang and M. H. Cho, Biotechnol. Bioprocess Eng., 8, 130 (2003).

    Article  CAS  Google Scholar 

  22. L. L. Kiiskinen, M. Rättö and K. Kruus, J. Appl. Microbiol., 97, 640 (2004).

    Article  CAS  Google Scholar 

  23. Y.C. Chang, D. Choi, K. Takamizawa and S. Kikuchi. Bioresour. Technol., 152, 429 (2014).

    Article  CAS  Google Scholar 

  24. K.Y. Shi, S.D. Yin, X. X. Tao, Y. Du, H. He, Z. P. Lv and N. Xu, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35, 1456 (2013).

    Article  CAS  Google Scholar 

  25. G.W. Strandberg and S.N. Lewis, J. Ind. Microbiol., 1, 371 (1987).

    Article  CAS  Google Scholar 

  26. A. Maka, V. J. Srivastava, J. J. Kilbane II and C. Akin, Appl. Biochem. Biotechnol., 20, 715 (1989).

    Article  Google Scholar 

  27. D.R. Quigley, B. Ward, D. L. Crawford, H. J. Hatcher and P.R. Dugan, Appl. Biochem. Biotechnol., 20, 753 (1989).

    Article  Google Scholar 

  28. H. Machnikowska, K. Pawelec and A. Podgórska, Fuel Process Technol., 77, 17 (2002).

    Article  Google Scholar 

  29. R. Hayatsu, R. E. Winans, R. G. Scott, L. P. Moore and M. H. Studdier, Preprints of the American Chemical Society, Division of Fuel, 22, 156 (1977).

    Google Scholar 

  30. T.G. Gao, F. Jiang, J. S. Yang, B. Z. Li and H. L. Yuan, Appl. Microbiol. Biotechnol., 92, 2581 (2012).

    Article  Google Scholar 

  31. N. Berezina, B. Yada and R. Lefebvre, N. Biotechnol., 32, 47 (2015).

    Article  CAS  Google Scholar 

  32. Y. Shi, L. Chai, C. Tang, Z. Yang, H. Zhang, R. Chen, Y. Chen and Y. Zheng, Biotechnol. Biofuels, 6, 1 (2013).

    Article  CAS  Google Scholar 

  33. N. El Azhari, M. Devers-Lamrani, G. Chatagnier, N. Rouard and F. Martin-Laurent, J. Hazard. Mater., 177, 593 (2010).

    Article  CAS  Google Scholar 

  34. N. Supaka, P. Pinphanichakarn, K. Pattaragulwanit, S. Thaniyavarn, T. Omori and K. Juntongjin, Sci. Asia, 27 (2001).

    Google Scholar 

  35. S.L. LaRoe, B. Wang and J. I. Han, Environ. Eng. Sci., 27, 505 (2010).

    Article  CAS  Google Scholar 

  36. Y. H. Oh, I.Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S.H. Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Geol Na or Si Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baylon, M.G., David, Y., Pamidimarri, S.D.V.N. et al. Bio-solubilization of the untreated low rank coal by alkali-producing bacteria isolated from soil. Korean J. Chem. Eng. 34, 105–109 (2017). https://doi.org/10.1007/s11814-016-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0252-x

Keywords

Navigation