Skip to main content
Log in

Modeling of the phase equilibria of aqueous two-phase systems using three-dimensional neural network

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional neural network model has been designed for representing the phase equilibrium data related to aqueous two-phase systems. The polyvinyl pyrrolidone/phosphate/water system was selected as the model system to demonstrate the point of interest. The collected experimental data were categorized into two subsets, training and validation sets, not only to find the suitable network configuration but also to prevent the overfitting problem. Meanwhile, the weight comparison method was proposed to optimize the three-dimensional neural net. The results of accuracy comparison indicate that it outperforms the two-dimensional neural network on some details and can further enhance the calculation accuracy of the phase equilibrium data for these investigated aqueous two-phase systems. The development of the neural network in the three-dimensional space should be a research project of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Azevedo, P. A. Rosa, I. F. Ferreira and M.R. J. Aires-Barros, J. Biotechnol., 132, 209 (2007).

    Article  CAS  Google Scholar 

  2. A. Šalic, A. Tušek, D. Fabek, I. Rukavina and B. Zelic, Food Technol. Biotechnol., 49, 495 (2011).

    Google Scholar 

  3. S. Tanuja, N.D. Srinivas, M. K. Gowthaman and K. S.M.S. Raghavarao, Bioprocess. Eng., 23, 63 (2000).

    Article  CAS  Google Scholar 

  4. A. Negrete, T.C. Ling and A. J. Lyddiatt, Chromatogr. B., 854, 13 (2007).

    Article  CAS  Google Scholar 

  5. G.D. Rodrigues, M.D.C.H. da Silva, L.H.M. da Silva, F. J. Paggioli, L.A. Minim and J. S.D. Reis Coimbra, Sep. Purif. Technol., 62, 687 (2008).

    Article  CAS  Google Scholar 

  6. N. Fedicheva, L. Ninni and G. Maurer, J. Chem. Eng. Data, 52, 1858 (2007).

    Article  CAS  Google Scholar 

  7. R. S. King, H.W. Blanch and J. M. Prausnitz, AIChE J., 34, 1585 (1998).

    Article  Google Scholar 

  8. M.T. Zafarani-Moattar and R. Sadeghi, Fluid. Phase. Equilib., 181, 95 (2001).

    Article  CAS  Google Scholar 

  9. B.D. Castro and M. Aznar, Braz. J. Chem. Eng., 22, 463 (2005).

    Article  CAS  Google Scholar 

  10. S. Gautam and L. Simon, Chem. Eng. Commun., 194, 117 (2007).

    Article  CAS  Google Scholar 

  11. R. Sadeghi, Fluid. Phase. Equilib., 237, 40 (2005).

    Article  CAS  Google Scholar 

  12. M.T. Zafarani-Moattar and V. Abdizadeh-Aliyar, J. Chem. Thermodyn., 72, 125 (2014).

    Article  CAS  Google Scholar 

  13. M. Lashkarbolooki, B. Vaferi and M.R. Rahimpour, Fluid. Phase. Equilib., 308, 35 (2011).

    Article  CAS  Google Scholar 

  14. Z. Zheng and K. M. Merz Jr., J. Chem. Inf. Model., 51, 1296 (2011).

    Article  CAS  Google Scholar 

  15. H. Parhizgar, M.R. Dehghani, A. Khazaei and M. Dalirian, Ind. Eng. Chem. Res., 51, 2775 (2012).

    Article  CAS  Google Scholar 

  16. R. Haghbakhsh, H. Adib, P. Keshavarz, M. Koolivand and S. Keshtkari, Thermochim. Acta, 551, 124 (2013).

    Article  CAS  Google Scholar 

  17. K. Sinha, S. Chowdhury, P.D. Saha and S. Datta, Ind. Crop. Prod., 41, 165 (2013).

    Article  CAS  Google Scholar 

  18. T. Bolanca, Š. Ukic, I. Peternel, H. Kušic and A. L. Božic, Indian J. Chem. Technol., 21, 21 (2014).

    CAS  Google Scholar 

  19. M. Afshar, A. Gholami and M. Asoodeh, Korean J. Chem. Eng., 31, 496 (2014).

    Article  CAS  Google Scholar 

  20. Y. Ammi, L. Khaouane and S. Hanini, Korean J. Chem. Eng., 32, 2300 (2015).

    Article  CAS  Google Scholar 

  21. P. Kan and C. J. Lee, Ind. Eng. Chem. Res., 35, 2015 (1996).

    Article  CAS  Google Scholar 

  22. M. Safamirzaei and H. Modarress, Fluid. Phase. Equilib., 309, 53 (2011).

    Article  CAS  Google Scholar 

  23. M.T. Zafarani-Moattar and R. Sadeghi, Fluid. Phase. Equilib., 203, 177 (2002).

    Article  CAS  Google Scholar 

  24. M.T. Zafarani-Moattar and R. Sadeghi, Fluid. Phase. Equilib., 238, 129 (2005).

    Article  CAS  Google Scholar 

  25. M.T. Zafarani-Moattar and J. Gasemi, Fluid. Phase. Equilib., 198, 281 (2002).

    Article  CAS  Google Scholar 

  26. K. Ananthapadmanabhan and E.D. Goddard, Langmuir, 3, 25 (1987).

    Article  CAS  Google Scholar 

  27. T. Qiu, P. S. Ma, L. E. Wang and H.D. Zheng, Chem. Eng. (China), 32, 62 (2004).

    CAS  Google Scholar 

  28. H.C. Lv and Y. H. Shen, J. Korean Chem. Soc., 57, 370 (2013).

    Article  CAS  Google Scholar 

  29. C. Si-Moussa, S. Hanini, R. Derriche, M. Bouhedda and A. Bouzidi, Braz. J. Chem. Eng., 25, 183 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Chao Lv.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H.C., Tian, D.Y. Modeling of the phase equilibria of aqueous two-phase systems using three-dimensional neural network. Korean J. Chem. Eng. 34, 170–178 (2017). https://doi.org/10.1007/s11814-016-0245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0245-9

Keywords

Navigation