Skip to main content
Log in

Analysis of Data on Vapor–Liquid Equilibrium in Multicomponent Systems Using Artificial Neural Networks

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A brief analysis of the possibilities of using the method of artificial neural networks (ANNs) for assessing and correlating data on vapor–liquid equilibrium is presented. The advantages of the Focke method are considered in the case of a limited amount of data, in this case, the parameters of vapor–liquid equilibrium. Six binary and four ternary systems are considered using a modified Argatov–Kocherbitov technique. The estimation of the correctness of the ANN method is presented for the values of excess Gibbs energy calculated from the data on the vapor–liquid equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wilson, G., Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc., 1964, vol. 86, no. 2, pp. 127–130. https://doi.org/10.1021/ja01056a002

    Article  CAS  Google Scholar 

  2. Renon, H. and Prausnitz, J.M., Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J., 1968, vol. 14, no. 1, pp. 135–144. https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

  3. Fredenslund, A., Jones, R.L., and Prausnitz, J.M., Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE J., 1975, vol. 21, no. 6, pp. 1086–1099. https://doi.org/10.1002/aic.690210607

    Article  CAS  Google Scholar 

  4. Abrams, D.S. and Prausnitz, J.M., Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J., 1975, vol. 21, no. 1, pp. 116–128. https://doi.org/10.1002/aic.690210115

    Article  CAS  Google Scholar 

  5. Gross, J. and Sadowski, G., Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res., 2001, vol. 40, no. 4, pp. 1244–1260. https://doi.org/10.1021/ie0003887

    Article  CAS  Google Scholar 

  6. Serafimov, L.A., State of the art in the thermodynamic and topological analysis of phase diagrams, Theor. Found. Chem. Eng., 2009, vol. 43, no. 3, pp. 268–278. https://doi.org/10.1134/S0040579509030051

    Article  CAS  Google Scholar 

  7. Serafimov, L.A., Pisarenko, Yu.A., and Kulov, N.N., Coupling chemical reaction with distillation: Thermodynamic analysis and practical applications, Chem. Eng. Sci., 1999, vol. 54, no. 10, pp. 1383–1388. https://doi.org/10.1016/S0009-2509(99)00051-2

    Article  CAS  Google Scholar 

  8. Serafimov, L.A. and Frolkova, A.K., Local regularities of phase diagrams of multiphase systems, Theor. Found. Chem. Eng., 1998, vol. 32, no. 4, p. 347.

    CAS  Google Scholar 

  9. Nguyen, V.D., Tan, R.R., Brondial, Y., and Fuchino, T., Prediction of vapor–liquid equilibrium data for ternary systems using artificial neural networks, Fluid Phase Equilib., 2007, vol. 254, nos. 1–2, pp. 188–197. https://doi.org/10.1016/j.fluid.2007.03.014

    Article  CAS  Google Scholar 

  10. Moghadam, M. and Asgharzadeh, S., On the application of artificial neural network for modeling liquid-liquid equilibrium, J. Mol. Liq., 2016, vol. 220, pp. 339–345. https://doi.org/10.1016/j.molliq.2016.04.098

    Article  CAS  Google Scholar 

  11. Roosta, A., Hekayati, J., and Javanmardi, J., Application of artificial neural networks and genetic programming in vapor–liquid equilibrium of C1 to C7 alkane binary mixtures, Neural Comput. Appl., 2019, vol. 31, p. 1165.

    Article  Google Scholar 

  12. Farzaneh-Gord, M., Mohseni-Gharyehsafa, B., Ebrahimi-Moghadam, A., Jabari-Moghadam, A., Toikka, A., and Zvereva, I., Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibration, Flow Meas. Instrum., 2018, vol. 64, p. 90.

    Article  Google Scholar 

  13. Farzaneh-Gord, M., Rahbari, H.R., Mohseni-Gharyehsafa, B., Toikka, A., and Zvereva, I., Machine learning methods for precise calculation of temperature drop during a throttling process, J. Therm. Anal. Calorim., 2020, vol. 140, no. 6, p. 2765.

    Article  CAS  Google Scholar 

  14. Haykin, S., Neural Networks: A Comprehensive Foundation, Englewood Cliffs, N.J.: Prentice-Hall, 1999.

    Google Scholar 

  15. Argatov, I. and Kocherbitov, V., A note on artificial neural network modeling of vapor-liquid equilibrium in multicomponent mixtures, Fluid Phase Equilib., 2019, vol. 502, article no. 112282. https://doi.org/10.1016/j.fluid.2019.112282

    Article  CAS  Google Scholar 

  16. Focke, W.W., Mixture models based on neural network averaging, Neural Comput., 2006, vol. 18, no. 1, pp. 1–9. https://doi.org/10.1162/089976606774841576

    Article  Google Scholar 

  17. Kudryavtseva, L.S. and Susarev, M.P., The vapor–liquid equilibrium in the chloroform–hexane and acetone–chloroform systems, Zh. Prikl. Khim., 1963, vol. 36, no. 6, p. 1231.

    CAS  Google Scholar 

  18. Vinichenko, I.G and Susarev, M.P., Study and calculation of the vapor–liquid equilibrium in the acetone–ethanol–n-hexane system, Zh. Prikl. Khim., 1966, vol. 39, p. 1583.

    CAS  Google Scholar 

  19. Kudryavtseva, L.S. and Susarev, M.P., The vapor–liquid equilibrium in the acetone–hexane and hexane– ethanol systems at temperatures of 35, 45, and 55°C and a pressure of 760 mm Hg, Zh. Prikl. Khim., 1963, vol. 36, no. 7, p. 1471.

    CAS  Google Scholar 

  20. Scatchard, G. and Raymond, C.L., Vapor–liquid equilibrium. II. Chloroform–ethanol mixtures at 35, 45 and 55°, J. Am. Chem. Soc., 1938, vol. 60, p. 1278.

    Article  CAS  Google Scholar 

  21. Frolkova, A.V., Frolkova, A.K., and Chelyuskina, T.V., Separation of the acetone–chloroform–ethanol–water four-component system by autoextractive heteroazeotropic distillation, Vestn. MITKHT, 2010, vol. 5, no. 6, p. 27.

    Google Scholar 

  22. Kudryavtseva, L.S. and Susarev, M.P., The vapor–liquid equilibrium in the ethanol–chloroform–hexane system at temperatures of 35, 45, and 55°C and a pressure of 760 mm Hg, Zh. Prikl. Khim., 1963, vol. 36, no. 9, p. 2025.

    CAS  Google Scholar 

  23. Kudryavtseva, L.S. and Susarev, M.P., The vapor–liquid equilibrium in the acetone–chloroform–hexane system at temperatures of 35, 45, and 55°C and a pressure of 760 mm Hg, Zh. Prikl. Khim., 1963, vol. 36, no. 8, p. 1710.

    CAS  Google Scholar 

  24. Vinichenko, I.G., Study and calculation of the vapor–liquid equilibrium in the ethanol–chloroform–acetone– hexane four-component system, Cand. Sci. (Chem.) Dissertation, Leningrad: Leningrad State Univ., 1966.

Download references

ACKNOWLEDGMENTS

The authors are grateful to V. Kocherbitov (University of Malmö, Sweden) for useful advice. The research was carried out using the computing resources of the Resource Center “Computer Center of SPbU”.

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 19-03-00375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Toikka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toikka, A.M., Misikov, G.K. & Petrov, A.V. Analysis of Data on Vapor–Liquid Equilibrium in Multicomponent Systems Using Artificial Neural Networks. Theor Found Chem Eng 55, 403–409 (2021). https://doi.org/10.1134/S004057952103026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952103026X

Keywords:

Navigation