Skip to main content
Log in

Enhancement of NO absorption in ammonium-based solution using heterogeneous Fenton reaction at low H2O2 consumption

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel NO removal system is designed, where NO is initially oxidized by •OH radicals from the decomposition of hydrogen peroxide (H2O2) over hematite and then absorbed by ammonium-based solution. According to the high performance liquid chromatography (HPLC) profile and the isopropanol injection experiments, the •OH radicals are proved to play a critical role in NO removal. The NO removal efficiency primarily depends on H2O2 concentration, gas hourly space velocity (GHSV), H2O2 feeding rate and reaction temperature, while the flue gas temperature slightly affects the NO removal efficiency. The low H2O2 consumption makes this system a promising technique in NO removal process using wet-method. The evolution of catalyst in reaction is analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The nitrite ion and nitrate ion in aqueous solution are detected by the continuous phase flow analyzer. Finally, the macrokinetic parameters of the NO oxidation are obtained by using the initial rate method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Jia, D. Du, X. Zhang, X. Ding and O. Zhong, Korean J. Chem. Eng., 30, 1735 (2013).

    Article  CAS  Google Scholar 

  2. D. S. Jin, B. R. Deshwal, Y. S. Park and H. K. Lee, J. Hazard. Mater., 135, 412 (2006).

    Article  CAS  Google Scholar 

  3. Y. Zhao, F. Liu, T. Guo and Y. Zhao, Science in China Series E: Technological Sciences, 52, 1768 (2009).

    Article  CAS  Google Scholar 

  4. Y. Liu, J. Zhang, C. Sheng, Y. Zhang and L. Zhao, Chem. Eng. J., 162, 1006 (2010).

    Article  CAS  Google Scholar 

  5. J. Zhang, R. Zhang, X. Chen, M. Tong, W. Kang, S. Guo, Y. Zhou and J. Lu, Ind. Eng. Chem. Res., 53, 6450 (2014).

    Article  CAS  Google Scholar 

  6. Y. Zhao, Y. Han, T. Guo and T. Ma, Energy, 67, 652 (2014).

    Article  CAS  Google Scholar 

  7. H. W. Park, S. Choi and D. W. Park, J. Hazard. Mater., 285, 117 (2015).

    Article  CAS  Google Scholar 

  8. Y. Zhao, R. Hao and M. Qi, Chem. Eng. J., 269, 159 (2015).

    Article  CAS  Google Scholar 

  9. Y. Zhao, R.-L. Hao, Q. Guo and Y.-N. Feng, Fuel Process. Technol., 137, 8 (2015).

    Article  CAS  Google Scholar 

  10. E. Sada, H. Kumazawa, I. Kudo and T. Kondo, Chem. Eng. Sci., 33, 315 (1978).

    Article  CAS  Google Scholar 

  11. H. Chu, T.-W. Chien and S. Li, Sci. Total Environ., 275, 127 (2001).

    Article  CAS  Google Scholar 

  12. J. Wei, Y. Luo, P. Yu, B. Cai and H. Tan, J. Ind. Eng. Chem., 15, 16 (2009).

    Article  CAS  Google Scholar 

  13. H. Fennv and Z. Qin, Environm. Pollution Control, 5, 004 (2012).

    Google Scholar 

  14. P. Fang, C.-p. Cen, X.-m. Wang, Z.-j. Tang, Z.-x. Tang and D.-s. Chen, Fuel Process. Technol., 106, 645 (2013).

    Article  CAS  Google Scholar 

  15. L. Chung and H. S. Huang, Phoenix-nasa low temperature multipollutant (no x, so x & mercury) control system for fossil fuel combustion, Challenges of power engineering and environment, Springer, 710 (2007).

    Google Scholar 

  16. S. Rahim Pouran, A. A. Abdul Raman and W. M. A. Wan Daud, J. Cleaner Production, 64, 24 (2014).

    Article  CAS  Google Scholar 

  17. M. C. Pereira, L C. A. Oliveira and E. Murad, Clay Minerals, 47, 285 (2012).

    Article  CAS  Google Scholar 

  18. J. Ding, Q. Zhong and S. Zhang, J. Mole. Catal. A: Chem., 393, 222 (2014).

    Article  CAS  Google Scholar 

  19. J. Ding, Q. Zhong, S. Zhang, F. Song and Y. Bu, Chem. Eng. J., 243, 176 (2014).

    Article  CAS  Google Scholar 

  20. J. Ding, Q. Zhong, S. Zhang and W. Cai, J. Hazard. Mater., 283, 633 (2015).

    Article  CAS  Google Scholar 

  21. X. Huang, J. Ding and Q. Zhong, Appl. Surf. Sci., 326, 66 (2015).

    Article  CAS  Google Scholar 

  22. Y. Liu, J. Zhang, J. Pan and A. Tang, Energy Fuels, 26, 5430 (2012).

    Article  CAS  Google Scholar 

  23. Y. Liu, J. Zhang and Z. Wang, Chem. Eng. J., 197, 468 (2012).

    Article  CAS  Google Scholar 

  24. Y. Liu, J. Zhang and Y. Yin, AIChE J., 61, 1322 (2015).

    Article  CAS  Google Scholar 

  25. Y. Lu, Y. Xiong and M. Gao, Proceedings of the CSEE, 28, 44 (2008).

    CAS  Google Scholar 

  26. W. P. Kwan and B. M. Voelker, Environ. Sci. Technol., 37, 1150 (2003).

    Article  CAS  Google Scholar 

  27. A. L.-T. Pham, C. Lee, F. M. Doyle and D. L. Sedlak, Environ. Sci. Technol., 43, 8930 (2009).

    Article  CAS  Google Scholar 

  28. C. M. Lousada and M. Jonsson, J. Phys. Chem. C, 114, 11202 (2010).

    Article  CAS  Google Scholar 

  29. L. Milne, I. Stewart and D. H. Bremner, Ultrasonics Sonochemistry, 20, 984 (2013).

    Article  CAS  Google Scholar 

  30. J L. Rendon and C. J. Serna, Clay Miner, 16, 375 (1981).

    Article  CAS  Google Scholar 

  31. E. Wolska, Zeitschrift für Kristallographie-Crystalline Materials, 154, 69 (1981).

    Article  CAS  Google Scholar 

  32. C. X. Gao, Q. F. Liu and D. S. Xue, J. Mater. Sci. Lett., 21, 1781 (2002).

    Article  CAS  Google Scholar 

  33. D. A. N. Li, X. Wang, G. Xiong, L. Lu, X. Yang and X. I. N. Wang, J. Mater. Sci. Lett., 16, 493 (1997).

    Article  CAS  Google Scholar 

  34. Q. Zhang, I. Lee, J. B. Joo, F. Zaera and Y. Yin, Acc. Chem. Res., 46, 1816 (2013).

    Article  CAS  Google Scholar 

  35. R.-t. Guo, J.-k. Hao, W.-g. Pan and Y.-l. Yu, Sep. Sci. Technol., (2014).

    Google Scholar 

  36. Y. Zhao, X. Wen, T. Guo and J. Zhou, Fuel Process. Technol., 128, 54 (2014).

    Article  CAS  Google Scholar 

  37. P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen and Z. Chen, Chem. Eng. J., 168, 52 (2011).

    Article  CAS  Google Scholar 

  38. Q. Dawei, Z. Jichao, G. Menglong and X. Yuanquan, Proceedings of the CSEE (2013).

    Google Scholar 

  39. T. X. Guo, Experimental investigation on simultaneous removal of so 2 and no x in liquid phase by new-type complex absorbent, J. North China Electr. Power Univ., 69 (2011).

    Google Scholar 

  40. Y. Zhao, R. Hao, P. Zhang and S. Zhou, Energy Fuels, 28, 6502 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanquan Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Xiong, Y., Ru, J. et al. Enhancement of NO absorption in ammonium-based solution using heterogeneous Fenton reaction at low H2O2 consumption. Korean J. Chem. Eng. 33, 3407–3416 (2016). https://doi.org/10.1007/s11814-016-0195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0195-2

Keywords

Navigation