Skip to main content
Log in

Effect of gas diffusion layer compression on the polarization curves of a polymer electrolyte membrane fuel cell: Analysis using a polarization curve-fitting model

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of gas diffusion layer (GDL) compression on the polarization curves of a polymer electrolyte membrane fuel cell was analyzed using a polarization curve-fitting model. The polarization curves measured at four different GDL compression ratios were fitted with the model and were decomposed into an open circuit voltage and three over-voltages resulting from activation, ohmic, and mass-transport losses, respectively. The model fitting was excellent enough to use the model in the subsequent analysis of the GDL compression effect. The relationship between the over-voltages and the compression ratio was investigated by analyzing the estimated model parameters, and an optimal compression ratio was determined for the fuel cell. The proposed analysis method based on the polarization curve-fitting model can be applied to identifying quantitative differences of polarization curves under various operating conditions and designs for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Larminie and A. Dicks, Fuel cell systems explained, 2nd Ed., Wiley, West Sussex, England (2003).

    Book  Google Scholar 

  2. F. Barbir, PEM fuel cells: Theory and practice, 2nd Ed., Elsevier, Burlington, USA (2013).

    Google Scholar 

  3. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho and X. C. Adroher, Appl. Energy, 88, 981 (2011).

    Article  CAS  Google Scholar 

  4. I.-S. Han and H. K. Shin, Korean Chem. Eng. Res., 53, 236 (2015).

    Article  CAS  Google Scholar 

  5. A. Mendez, T. J. Leo and M. A. Herreros, Energies, 7, 4676 (2014).

    Article  Google Scholar 

  6. S. Park and B. N. Popov, Korean J. Chem. Eng., 31, 1384 (2014).

    Article  CAS  Google Scholar 

  7. I.-S. Han, B.-K. Kho and S. Cho, J. Power Sources, 304, 244 (2016).

    Article  CAS  Google Scholar 

  8. C. H. Choi, S. Yu, I.-S. Han, B.-K. Kho, D.-G. Kang, H. Y. Lee, M.-S. Seo, J.-W. Kong, G. Kim, J.-W. Ahn, S.-K. Park, D.-W. Jang, J. H. Lee and M. Kim, Int. J. Hydrogen Energy, 41, 3591 (2016).

    Article  CAS  Google Scholar 

  9. W.-K. Lee, C.-H. Ho, J. W. Van Zee and M. Murthy, J. Power Sources, 84, 45 (1999).

    Article  CAS  Google Scholar 

  10. J. Ge, A. Higier and H. Liu, J. Power Sources, 159, 922 (2006).

    Article  CAS  Google Scholar 

  11. J.-H. Lin, W.-H. Chen, Y.-J. Su and T.-H. Ko, Fuel, 87, 2420 (2008).

    Article  CAS  Google Scholar 

  12. Y. Zhou, K. Jiao, Q. Du, Y. Yin and X. Li, Int. J. Hydrogen Energy, 38, 12891 (2013).

    Article  CAS  Google Scholar 

  13. I. Nitta, O. Himanen and M. Mikkola, Electrochem. Commun., 10, 47 (2008).

    Article  CAS  Google Scholar 

  14. M. S. Ismail, D. B. Ingham, L. Ma and M. Pourkashanian, Renew. Energy, 52, 40 (2013).

    Article  CAS  Google Scholar 

  15. D. Ye, E. Gauthier, J. B. Benziger and M. Pan, J. Power Sources, 256, 449 (2014).

    Article  CAS  Google Scholar 

  16. A. Bazylak, D. Sinton, Z.-S. Liu and N. Djilali, J. Power Sources, 163, 784 (2007).

    Article  CAS  Google Scholar 

  17. D. H. Yee, E. Gauthier, M. J. Cheah, J. Benziger and M. Pan, AIChE J., 61, 355 (2015).

    Article  Google Scholar 

  18. X. Yuan, H. Wang, J. C. Sun and J. Zhang, Int. J. Hydrogen Energy, 32, 4365 (2007).

    Article  CAS  Google Scholar 

  19. S. Haji, Renew. Energy, 36, 451 (2011).

    Article  CAS  Google Scholar 

  20. M. V. Moreira and G. E. da Silva, Renew. Energy, 34, 1734 (2009).

    Article  CAS  Google Scholar 

  21. J. Kim, S.-M. Lee, S. Srinivasan and C. E. Chamberlin, J. Electrochem. Soc., 142, 2670 (1995).

    Article  CAS  Google Scholar 

  22. A. Saadi, M. Becherif, A. Aboubou and M. Y. Ayad, Renew. Energy, 56, 67 (2013).

    Article  Google Scholar 

  23. F. Laurencelle, R. Chahine, J. Hamelin, K. Agbossou, M. Fournier, T. K. Bose and A. Laperriere, Fuel Cells, 1, 66 (2001).

    Article  CAS  Google Scholar 

  24. MATLAB optimization toolbox user’s guide, http://it.mathworks.com/help/pdf_doc/optim/optim_tb. pdf.

  25. M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka and Z. Ogumi, Electrochim. Acta, 51, 5746 (2006).

    Article  CAS  Google Scholar 

  26. X.-X. Yuan, S. Zhang, H. Wang, J. Wu, J. C. Sun, R. Hiesgen, K. A. Friedrich, M. Shulze and A. Huag, J. Power Sources, 195, 7594 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Bock Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, IS., Park, SK. & Chung, CB. Effect of gas diffusion layer compression on the polarization curves of a polymer electrolyte membrane fuel cell: Analysis using a polarization curve-fitting model. Korean J. Chem. Eng. 33, 3121–3127 (2016). https://doi.org/10.1007/s11814-016-0157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0157-8

Keywords

Navigation