Skip to main content
Log in

HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

5-Hydroxymethyl furfural (HMF) is known as a noteworthy platform in a biorefinery concept. HMF was prepared via fructose dehydration in aqueous and organic media, using three methods, i.e., conventional heating, ultrasonication and microwave irradiation. Water, methyl isobutyl ketone (MIBK), methyl ethyl ketone and ethyl acetate were used as media for HCl-catalyzed synthesis of HMF. FTIR and 1H-NMR spectroscopies were used for analysis. The synthesis yield and selectivity were investigated to optimize variables such as fructose concentration, catalyst dosage, temperature, irradiation power, solvent, and the reaction atmosphere. It was found that the yield in the organic media was superior to that of the aqueous ones. In addition, nitrogen atmosphere favored higher yield than air, due to lack of HMF oxidation. As conclusion, the highest yields of the conventional, ultrasonicated and microwave-assisted reactions were 87, 53, and 38%, respectively. In the reactions ultrasonically promoted, the reaction time scale was highly reduced from hours to minutes. The yield was varied with treatment times, so that ultrasonication was recognized to be the best approach in terms of yield, while the microwave method was the fastest one. Selectivity varied from 60 to 90% depending the reaction media and promotion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Van Putten, J. C. Van Der Waal, E. De Jong, C. B. Rasrendra, H. J. Heeres and J. G. De Vries, Chem. Rev., 113, 1499 (2013).

    Article  Google Scholar 

  2. Y.-B. Yi, M.-G. Ha, J.-W. Lee and C.-H. Chung, Korean J. Chem. Eng., 30, 1429 (2013).

    Article  CAS  Google Scholar 

  3. S. B. Kim, J. H. Lee, X. Yang, J. Lee and S. W. Kim, Korean J. Chem. Eng., 32, 1 (2015).

    Article  Google Scholar 

  4. A. Mukherjee and V. Raghavan, Biomass and Bioenergy, 72, 143 (2015).

    Article  CAS  Google Scholar 

  5. Y. H. Oh, I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong and S. J. Park, Korean J. Chem. Eng., 32, 1945 (2015).

    Article  CAS  Google Scholar 

  6. A. Gandini, in: K. Loos (Ed.), Biocatalysis in polymer chemistry, Wiley, n.d., pp. 1-34.

  7. G. Mulder, J. Prakt. Chem., 21, 203 (1840).

    Article  Google Scholar 

  8. G. Dull, Chem Zeit, 19, 1003 (1895).

    Google Scholar 

  9. J. Kiermayer, Chem. Appar., 19, 1004 (1895).

    Google Scholar 

  10. D. M. B. Ribeiro, M. Ritter, A. O. Souza, R. Freitag, M. D. Farias, A. F. C. Flores, A. Souto, C. L. Lencina and C. M. P. Pereira, Ultrason. Sonochem., 20, 99 (2013).

    Article  CAS  Google Scholar 

  11. I. Agirrezabal-Telleria, I. Gandarias and P. L. Arias, Catal. Today, 234, 42 (2014).

    Article  CAS  Google Scholar 

  12. S. P. Teong, G. Yi and Y. Zhang, Green Chem., 16, 2015 (2014).

    Article  CAS  Google Scholar 

  13. M. Dashtban, A. Gilbert and P. Fatehi, RSC Adv., 4, 2037 (2014).

    Article  CAS  Google Scholar 

  14. L. Atanda, S. Mukundan, A. Shrotri, Q. Ma and J. Beltramini, ChemCatChem, 7, 781 (2015).

    Article  CAS  Google Scholar 

  15. A. Jain, A. M. Shore, S. C. Jonnalagadda, K. V. Ramanujachary and A. Mugweru, Appl. Catal. A Gen., 489, 72 (2015).

    Article  CAS  Google Scholar 

  16. T. Wang, M. W. Nolte and B. H. Shanks, Green Chem., 16, 548 (2014).

    Article  CAS  Google Scholar 

  17. F. A. Rodrigues and R. Guirardello, Chem. Eng. J., 37, 475 (2014).

    Google Scholar 

  18. F. Koopman, N. Wierckx, J. H. de Winde and H. J. Ruijssenaars, Bioresour. Technol., 101, 6291 (2010).

    Article  CAS  Google Scholar 

  19. B. Liu, Y. Ren and Z. Zhang, Green Chem., 17, 1610 (2015).

    Article  CAS  Google Scholar 

  20. H. Ma, F. Wang, Y. Yu, L. Wang and X. Li, Ind. Eng. Chem. Res., 54, 2657 (2015).

    Article  CAS  Google Scholar 

  21. M. Zhang, X. Tong, R. Ma and Y. Li, Catal. Today, 6 (2015).

    Google Scholar 

  22. R. Noma, K. Nakajima, K. Kamata, M. Kitano, S. Hayashi and M. Hara, J. Phys. Chem. C, 119, 17117 (2015).

    Article  CAS  Google Scholar 

  23. B. F. M. Kuster, 42, 314 (1990).

  24. T. S. Hansen, J. M. Woodley and A. Riisager, Carbohydr. Res., 344, 2568 (2009).

    Article  CAS  Google Scholar 

  25. T. J. Christian, M. Manley-Harris, R. J. Field and B. A. Parker, J. Agric. Food Chem., 48, 1823 (2000).

    Article  CAS  Google Scholar 

  26. D. A. Kotadia and S. S. Soni, Catal. Sci. Technol., 3, 469 (2013).

    Article  CAS  Google Scholar 

  27. L. Hu, G. Zhao, X. Tang, Z. Wu, J. Xu, L. Lin and S. Liu, Bioresour. Technol., 148, 501 (2013).

    Article  CAS  Google Scholar 

  28. L. Zhou, Y. He, Z. Ma, R. Liang, T. Wu and Y. Wu, Carbohydr. Polym., 117, 694 (2015).

    Article  CAS  Google Scholar 

  29. J.-A. Chun, J.-W. Lee, Y.-B. Yi, S.-S. Hong and C.-H. Chung, Korean J. Chem. Eng., 27, 930 (2010).

    Article  CAS  Google Scholar 

  30. S. Wang, Y. Du, P. Zhang, X. Cheng and Y. Qu, Korean J. Chem. Eng., 31, 2286 (2014).

    Article  CAS  Google Scholar 

  31. S. Wang, Y. Du, W. Zhang, X. Cheng and J. Wang, Korean J. Chem. Eng., 31, 1786 (2014).

    Article  CAS  Google Scholar 

  32. N. A. S. Ramli and N. A. S. Amin, J. Mol. Catal. A Chem., 407, 113 (2015).

    Article  CAS  Google Scholar 

  33. D. W. Brown, A. J. Floyd, R. G. Kinsman and Y. Ali, J. Chem. Technol. Biotechnol., 32, 920 (1982).

    Article  CAS  Google Scholar 

  34. X. Qi, H. Guo, L. Li and R. L. Smith, ChemSusChem, 5, 2215 (2012).

    Article  CAS  Google Scholar 

  35. J. Zhang and E. Weitz, ACS Catal., 2, 1211 (2012).

    Article  CAS  Google Scholar 

  36. V. da Silva Lacerda, J. B. López-Sotelo, A. Correa-Guimarães, S. Hernández-Navarro, M. Sánchez-Bascones, L. M. Navas-Gracia, P. Martín-Ramos, E. Pérez-Lebeña and J. Martín-Gil, Bioresour. Technol., 180, 88 (2015).

    Article  Google Scholar 

  37. X. Qi, M. Watanabe, T. Aida and R. L. Smith, Green Chem., 11, 1327 (2009).

    Article  CAS  Google Scholar 

  38. F. Guo, Z. Fang and T. J. Zhou, Bioresour. Technol., 112, 313 (2012).

    Article  CAS  Google Scholar 

  39. X. Zhou, Z. Zhang, B. Liu, Z. Xu and K. Deng, Carbohydr. Res., 375, 68 (2013).

    Article  CAS  Google Scholar 

  40. B. Saha and M. M. Abu-omar, Green Chem., 16, 24 (2014).

    Article  CAS  Google Scholar 

  41. Y. Román-Leshkov and J. A. Dumesic, Top. Catal., 52, 297 (2009).

    Article  Google Scholar 

  42. L. J. Lorenz, Modern Methods of Pharmaceutical Analysis, Second Ed., CRC Press, Florida (2000).

    Google Scholar 

  43. X. Tong and Y. Li, ChemSusChem, 3, 350 (2010).

    Article  CAS  Google Scholar 

  44. N. Jiang, W. Qi, R. Huang, M. Wang and Z. He, J. Chem. Technol. Biotechnol., 89, 56 (2013).

    Article  Google Scholar 

  45. B. Klinpratoom, A. Ontanee and C. Ruangviriyachai, Korean J. Chem. Eng., 32, 413 (2015).

    Article  CAS  Google Scholar 

  46. H. E. Van Dam, Starch, 38, 95 (1986).

    Article  Google Scholar 

  47. F. Wang, H.-Z. Wu, C.-L. Liu, R.-Z. Yang and W.-S. Dong, Carbohydr. Res., 368, 78 (2013).

    Article  CAS  Google Scholar 

  48. K. Gollnick and A. Griesbeck, Tetrahedron, 41, 2057 (1985).

    Article  CAS  Google Scholar 

  49. G. C. M. Lee, E. T. Syage, D. Harcourt, J. M. Holmes and M. E. Garst, J. Org. Chem., 56, 7007 (1991).

    Article  CAS  Google Scholar 

  50. T. Montagnon, M. Tofi and G. Vassilikogiannakis, Acc. Chem. Res., 41, 1001 (2008).

    Article  CAS  Google Scholar 

  51. M. J. Antal, W. S. L. Mok and G. N. Richards, Carbohydr. Res., 199, 91 (1990).

    Article  CAS  Google Scholar 

  52. Y. Li, H. Liu, C. Song, X. Gu, H. Li, W. Zhu, S. Yin and C. Han, Bioresour. Technol., 133, 347 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jalal Zohuriaan-Mehr.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, N., Zohuriaan-Mehr, M.J., Bouhendi, H. et al. HMF synthesis in aqueous and organic media under ultrasonication, microwave irradiation and conventional heating. Korean J. Chem. Eng. 33, 1964–1970 (2016). https://doi.org/10.1007/s11814-016-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0031-8

Keywords

Navigation