Skip to main content
Log in

Reviews on drag reducing polymers

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Polymers are effective drag reducers owing to their ability to suppress the formation of turbulent eddies at low concentrations. Existing drag reduction methods can be generally classified into additive and non-additive techniques. The polymer additive based method is categorized under additive techniques. Other drag reducing additives are fibers and surfactants. Non-additive techniques are associated with the applications of different types of surfaces: riblets, dimples, oscillating walls, compliant surfaces and microbubbles. This review focuses on experimental and computational fluid dynamics (CFD) modeling studies on polymer-induced drag reduction in turbulent regimes. Other drag reduction methods are briefly addressed and compared to polymer-induced drag reduction. This paper also reports on the effects of polymer additives on the heat transfer performances in laminar regime. Knowledge gaps and potential research areas are identified. It is envisaged that polymer additives may be a promising solution in addressing the current limitations of nanofluid heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Brostow, J. Ind. Eng. Chem., 14, 409 (2008).

    CAS  Google Scholar 

  2. B.A. Toms, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, Proceedings of the 1st International Congress on Rheology (1949).

  3. E.D. Burger, W.R. Munk and H.A. Wahl, J. Pet. Technol., 34, 377 (1982).

    CAS  Google Scholar 

  4. G. C. Liaw, J. L. Zakin and G. K. Patterson, AIChE J., 17, 391 (1971).

    CAS  Google Scholar 

  5. P. Peyser, J. Appl. Polym. Sci., 17, 421 (1973).

    CAS  Google Scholar 

  6. M. Kostic, Int. J. Heat Mass Trans., 37, 133 (1994).

    CAS  Google Scholar 

  7. N. S. Berman, Annu. Rev. Fluid Mech., 10, 47 (1978).

    CAS  Google Scholar 

  8. D.R. Oliver and R.B. Karim, Canadian J. Chem. Eng., 49, 236 (1971).

    CAS  Google Scholar 

  9. B. Mena, G. Best, P. Bautista and T. Sanchez, Rheol. Acta, 17, 454 (1978).

    CAS  Google Scholar 

  10. J. P. Hartnett and M. Kostic, Int. J. Heat Mass Transfer, 28, 1147 (1985).

    CAS  Google Scholar 

  11. M. K. Gupta, A. B. Metzner and J. P. Hartnett, Int. J. Heat Mass Transfer, 10, 1211 (1967).

    CAS  Google Scholar 

  12. P.S. Virk, E.W. Merrill, H.S. Mickley, K.A. Smith and E.L. Mollo-Christensen, J. Fluid Mech., 30, 305 (1967).

    CAS  Google Scholar 

  13. W.D. McComb and L. H. Rabie, AIChE J., 28, 547 (1982).

    CAS  Google Scholar 

  14. R.H. J. Sellin and M. Ollis, Ind. Eng. Chem. Prod. Res. Dev., 22, 445 (1983).

    CAS  Google Scholar 

  15. A. Abubakar, T. Al-Wahaibi, Y. Al-Wahaibi, A.R. Al-Hashmi and A. Al-Ajmi, Chem. Eng. Res. Design, 92, 2153 (2014).

    CAS  Google Scholar 

  16. J. P. Hartnett, J. Heat Transfer, 114, 296 (1992).

    CAS  Google Scholar 

  17. Y. I. Cho and J. P. Harnett, Non-Newtonian fluids in circular pipe flow, in Advances in Heat Transfer, J. P. Harnett and F. I. Thomas Eds., Elsevier, USA, 59 (1982).

  18. E.Y. Kwack, J. P. Hartnett and Y. I. Cho, Wärmeund Stoffübertragung, 16, 35 (1982).

    CAS  Google Scholar 

  19. E.Y. Kwack and J. P. Hartnett, Int. Commun. Heat Mass Transfer, 10, 451 (1983).

    CAS  Google Scholar 

  20. N. J. Kim, S. Kim, S.H. Lim, K. Chen and W. Chun, Int. Commun. Heat Mass Transfer, 36, 1014 (2009).

    CAS  Google Scholar 

  21. J. L. Lumley, Annu. Rev. Fluid Mech., 1, 367 (1969).

    CAS  Google Scholar 

  22. D. J. Fleming, Capillary Rheometry, Polymer Rheology’ 99 Conference: Approach to Quality Control for the Plastics and Rubber Industries (1999).

  23. C.D. Dimitropoulos, R. Sureshkumar and A. N. Beris, J. Non-Newtonian Fluid Mech., 79, 433 (1998).

    CAS  Google Scholar 

  24. D. Bonn, A. Yacine, W. Christian, D. Stéphane and C. Olivier, J. Phys.: Condens. Matter, 17, S1195 (2005).

    CAS  Google Scholar 

  25. J. J. J. Gillissen, Phys. Rev. E, 78, 046311 (2008).

    CAS  Google Scholar 

  26. J.M.J.D. Toonder, M. A. Hulsen, G.D. C. Kuiken and F.T.M. Nieuwstadt, J. Fluid Mech., 337, 193 (1997).

    Google Scholar 

  27. T. Min, J. Yul Yoo, H. Choi and D.D. Joseph, J. Fluid Mech., 486, 213 (2003).

    CAS  Google Scholar 

  28. T. T. Tung, K. S. Ng and J. P. Hartnett, Lett. Heat and Mass Transfer, 5, 59 (1978).

    CAS  Google Scholar 

  29. P. S. Virk, H. S. Mickley and K. A. Smith, J. Appl. Mech., 37, 488 (1970).

    CAS  Google Scholar 

  30. M. Poreh and U. Paz, Int. J. Heat Mass Transfer, 11, 805 (1968).

    Google Scholar 

  31. J. P. Hartnett and E. Y. Kwack, Int. J. Thermophys., 7, 53 (1986).

    CAS  Google Scholar 

  32. P. M. Debrule and R. H. Sabersky, Int. J. Heat Mass Transfer, 17, 529 (1974).

    CAS  Google Scholar 

  33. R. P. Singh, Drag reduction, in Encyclopedia of Polymer Science and Technology, J. I. Kroschwitz Ed., John Wiley & Sons, Inc., New Jersey, 519 (2002).

  34. R.H. J. Sellin, J.W. Hoyt and O. Scrivener, J. Hydraulic Res., 20, 29 (1982).

    Google Scholar 

  35. R.P. Singh, Drag reduction, in Properties and Behavior of Polymers, J. Bailey, A. Seidel, E. Arndt, S. Thomas, K. Parrish and D. Gonzalez Eds., John Wiley & Sons, Inc., New Jersey, 254 (2011).

  36. K. H. Toh and A. J. Ghajar, Int. J. Heat Mass Transfer, 31, 1261 (1988).

    CAS  Google Scholar 

  37. S. X. Gao and J. P. Hartnett, Int. Commun. Heat Mass Transfer, 19, 673 (1992).

    CAS  Google Scholar 

  38. S. Shin and I. Y. Cho, Int. J. Heat Mass Transfer, 37 19 (1994).

    CAS  Google Scholar 

  39. J. P. Hartnett and M. Kostic, Heat transfer to Newtonian and non- Newtonian fluids in rectangular ducts, in Advances in Heat Transfer, J. P. Hartnett and J.T. F. Irvine Eds., Academic Press, Inc., USA, 247 (1989).

  40. W. K. Gingrich, Y. I. Cho and W. Shyy, Int. J. Heat Mass Transfer, 35, 2823 (1992).

    CAS  Google Scholar 

  41. P. Escudier and S. Smith, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 457, 911 (2001).

    CAS  Google Scholar 

  42. M. Kostic and J.P. Hartnett, Int. Commun. Heat Mass Transfer, 12, 483 (1985).

    CAS  Google Scholar 

  43. K. S. Yang, H. J. Choi, C. B. Kim, I. S. Kim and M. S. Jhon, Korean J. Chem. Eng., 11, 8 (1994).

    CAS  Google Scholar 

  44. C.A. Kim, D. S. Jo, H. J. Choi, C.B. Kim and M. S. Jhon, Polym. Test., 20, 43 (2001).

    CAS  Google Scholar 

  45. H. J. Choi, C. A. Kim and M. S. Jhon, Polymer, 40, 4527 (1999).

    CAS  Google Scholar 

  46. C.A. Kim, J.T. Kim, K. Lee, H. J. Choi and M.S. Jhon, Polymer, 41, 7611 (2000).

    CAS  Google Scholar 

  47. S.T. Lim, H. J. Choi, S.Y. Lee, J. S. So and C. K. Chan, Macromolecules, 36, 5348 (2003).

    CAS  Google Scholar 

  48. S.T. Lim, H. J. Choi and C.K. Chan, Macromol. Rapid Commun., 26, 1237 (2005).

    CAS  Google Scholar 

  49. J.T. Kim, C. A. Kim, K. Zhang, C. H. Jang and H. J. Choi, Colloids Surf., A: Physicochem. Eng. Asp., 391, 125 (2011).

    CAS  Google Scholar 

  50. J. I. Sohn, C.A. Kim, H. J. Choi and M. S. Jhon, Carbohydr. Polym., 45, 61 (2001).

    CAS  Google Scholar 

  51. C.A. Kim, S.T. Lim, H. J. Choi, J. I. Sohn and M.S. Jhon, J. Appl. Polym. Sci., 83, 2938 (2002).

    CAS  Google Scholar 

  52. Z. Matras, T. Malcher and B. Gzyl-Malcher, Thin Solid Films, 516, 8848 (2008).

    CAS  Google Scholar 

  53. A.A. Mohsenipour and R. Pal, Canadian J. Chem. Eng., 91, 190 (2013).

    CAS  Google Scholar 

  54. P.K. Ptasinski, B. J. Boersma, F.T.M. Nieuwstadt, M.A. Hulsen, B. H. A. A. Van Den Brule and J. C.R. Hunt, J. Fluid Mech., 490, 251 (2003).

    CAS  Google Scholar 

  55. V. E. Terrapon, Lagrangian simulations of turbulent drag reduction by a dilute solution of polymers in a channel flow, Ph.D. Thesis, Stanford University (2005).

  56. M.T. Dhotre, K. Ekambara and J.B. Joshi, J. Chem. Eng. Japan, 40, 304 (2007).

    CAS  Google Scholar 

  57. M.P. Escudier, F. Presti and S. Smith, J. Non-Newtonian Fluid Mech., 81, 197 (1998).

    Google Scholar 

  58. F. Presti, Investigation of transitional and turbulent pipe flow of non-Newtonian fluids, Ph.D. Thesis, University of Liverpool, UK (2000).

  59. M. F. Naccache and P.R. S. Mendes, Int. J. Heat Fluid Flow, 17, 613 (1996).

    CAS  Google Scholar 

  60. B. Dean and B. Bhushan, Philosophical Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci., 368, 4775 (2010).

    Google Scholar 

  61. H.A. Abdulbari, R.M. Yunus, N.H. Abdurahman and A. Charles, J. Ind. Eng. Chem., 19, 27 (2013).

    CAS  Google Scholar 

  62. R. García-Mayoral and J. Jiménez, Philos. Trans. R. Soc. A: Mathematical, Phys. Eng. Sci., 369, 1412 (2011).

    Google Scholar 

  63. J.B. Huang and C.M. Ho, Microriblets for drag reduction, Smart Structures and Materials 1995: Smart Electronics (1995).

  64. M. J. Walsh, Drag characteristics of v-groove and transverse curvature riblets, in Viscous Flow Drag Reduction, G. R. Hough Ed., American Institute of Aeronautics and Astronautics, Washington, 168 (1980).

  65. M. J. Walsh, Riblets, in Viscous Drag Reduction in Boundary Layers, D. M. Bushnell and J. N. Hefner Eds., American Institute of Aeronautics and Astronautics, Washington, 203 (1990).

  66. C.K. Liu, S. Klein and J. Johnston, An experimental study of turbulent boundary layer on rough walls, Stanford University, Department of Mechanical Engineering (1966).

  67. H. Choi, P. Moin and J. Kim, Phys. Fluids A: Fluid Dynamics, 3, 1892 (1991).

    Google Scholar 

  68. D. C. Chu and G. E. Karniadakis, J. Fluid Mech., 250, 1 (1993).

    CAS  Google Scholar 

  69. K. S. Choi, J. Fluid Mech., 208, 417 (1989).

    Google Scholar 

  70. C. Warsop, Turbulent drag reduction methods- Current status and prospects for turbulent flow control, in Aerodynamic Drag Reduction Technologies: Proceedings of the CEAS/DragNet European Drag Reduction Conference, P. Thiede Ed., Springer, Germany, 269 (2001).

  71. H. Choi, P. Moin and J. Kim, J. Fluid Mech., 255, 503 (1993).

    CAS  Google Scholar 

  72. A. Baron, M. Quadrio and L. Vigevano, Int. J. Heat Fluid Flow, 14, 324 (1993).

    CAS  Google Scholar 

  73. E. Bacher and C. Smith, A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular microgroove surface modifications, American Institute of Aeronautics and Astronautics, Shear Flow Control Conference (1985).

  74. V. V. Alekseev, I. A. Gachechiladze, G. I. Kiknadze and V. G. Oleinikov, Tornado-like energy transer on three-dimensional concavities of reliefs-structure of self-organizing flow, their visualization, and surface streamlining mechanicms, in Transactions of the 2nd Russian Nat. Conf. of Heat Transfer, vol. 6, Heat Transfer Intensification Radiation and Complex Heat Transfer, Publishing House of Moscow Energy Institute (MEI), Moscow, 33 (1998).

  75. S. Aoyama, Golf ball dimple pattern, US Patent, 5,957,786 (1999).

    Google Scholar 

  76. A. Kasashima, Golf ball, US Patent, 6,761,647 (2004).

    Google Scholar 

  77. L. L. M. Veldhuis and E. Vervoort, Drag effect of a dented surface in a turbulent flow, Proceedings of the 27th AIAA Applied Aerodynamics Conference (2009).

  78. H. Lienhart, M. Breuer and C. Köksoy, Int. J. Heat Fluid Flow, 29, 783 (2008).

    CAS  Google Scholar 

  79. H. M. Kim, M. A. Moon and K.Y. Kim, Energy, 36, 3419 (2011).

    Google Scholar 

  80. C. Silva, E. Marotta and L. Fletcher, J. Electronic Packaging, 129, 157 (2006).

    Google Scholar 

  81. N. K. Burgess, M. M. Oliveira and P. M. Ligrani, J. Heat Transfer, 125, 11 (2003).

    Google Scholar 

  82. A. Samad, K.D. Lee and K.Y. Kim, Heat Mass Transfer, 45, 207 (2008).

    Google Scholar 

  83. S. M. Trujillo, B. David, B. Kenneth, T. Steven, B. David and B. Kenneth, Turbulent boundary layer drag reduction using an oscillating wall, 4th Shear Flow Control Conference (1997).

  84. J. Fang, L. Lu and L. Shao, Sci. in China Series G: Phys. Mech. and Astronomy, 52, 1233 (2009).

    CAS  Google Scholar 

  85. A. Baron and M. Quadrio, Appl. Sci. Res., 55, 311 (1996).

    Google Scholar 

  86. F. Laadhari, L. Skandaji and R. Morel, Phys. Fluids, 6, 3218 (1994).

    Google Scholar 

  87. K. S. Choi, J.R. Debisschop and B.R. Clayton, AIAA J., 36, 1157 (1998).

    CAS  Google Scholar 

  88. K. S. Choi and B.R. Clayton, Int. J. Heat Fluid Flow, 22, 1 (2001).

    Google Scholar 

  89. K. S. Choi, Phys. Fluids, 14, 2530 (2002).

    CAS  Google Scholar 

  90. P. Ricco and M. Quadrio, Int. J. Heat Fluid Flow, 29, 891 (2008).

    Google Scholar 

  91. W. J. Jung, N. Mangiavacchi and R. Akhavan, Phys. Fluids A: Fluid Dynamics, 4, 1605 (1992).

    CAS  Google Scholar 

  92. M. Quadrio and P. Ricco, J. Fluid Mech., 521, 251 (2004).

    Google Scholar 

  93. K. S. Choi and M. Graham, Phys. Fluids, 10, 7 (1998).

    CAS  Google Scholar 

  94. M.O. Kramer, J. American Society for Naval Engineers, 72, 25 (1960).

    Google Scholar 

  95. F.W. Puryear, Boundary layer control: Drag reduction by use of compliant coatings, David Taylor Model Basin Report No. 1668, Naval Surface Warfare Center (1962).

  96. C.R. Nisewanger, Flow noise and drag measurements of vehicle with compliant coating, Report No. 8518 NOTS No. TP-3510, US Naval Ordnance Test Station (1964).

  97. H. Ritter and L. Messum, Water tunnel measurements of turbulent skin friction on six different compliant surfaces of 1 ft length, Report No. ARL/N4/GHY/9/7, ARL/G/N9, British Admiralty Research Laboratory (1964).

  98. H. Ritter and J. Porteous, Water tunnel measurements of skin friction on a compliant coating, Report No. ARL/N3/G/HY/9/7, British Admiralty Research Laboratory (1964).

  99. P.W. Carpenter and A.D. Garrad, J. Fluid Mech., 155, 465 (1985).

    Google Scholar 

  100. T. B. Benjamin, J. Fluid Mech., 9, 513 (1960).

    Google Scholar 

  101. R. Betchov, J. Ship Res., 4, 37 (1960).

    Google Scholar 

  102. M. T. Landahl, J. Fluid Mech., 13, 609 (1962).

    Google Scholar 

  103. V.M. Kulik, I. S. Poguda and B.N. Semenov, Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations, in Recent Developments in Turbulence Management, K. S. Choi Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, 263 (1991).

  104. B.N. Semenov, On conditions of modelling and choice of viscoelastic coatings for drag reduction, in Recent Developments in Turbulence Management, K. S. Choi Ed., Kluwer Academic Publishers, Dordrecht, Netherlands, 241 (1991).

  105. K. S. Choi, X. Yang, B. R. Clayton, E. J. Glover, M. Atlar, B. N. Semenov and V.M. Kulik, Proceedings of the Royal Society of London. Series A: Mathematical, Phys. Eng. Sci., 453, 2229 (1997).

    Google Scholar 

  106. T. Endo and R. Himeno, J. Turbulence, 3, 7 (2002).

    Google Scholar 

  107. S. Xu, D. Rempfer and J. Lumley, J. Fluid Mech., 478, 11 (2003).

    Google Scholar 

  108. T. Kawamura, Y. Moriguchi, H. Kato, A. Kakugawa and Y. Kodama, Effect of bubble size on the microbubble drag reduction of a turbulent boundary layer, ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference (2003).

  109. E. Afiza and H. Okanaga, Effect of skin friction reduction by microbubbles in pipe flow, Proceedings of the School of Engineering of Tokai University (2012).

  110. Y. Kodama, A. Kakugawa, T. Takahashi and H. Kawashima, Int. J. Heat Fluid Flow, 21, 582 (2000).

    Google Scholar 

  111. H. Kato, T. Iwashina, M. Miyanaga and H. Yamaguchi, J. Marine Sci. Technol., 4, 155 (1999).

    Google Scholar 

  112. M. E. McCormick and R. Bhattacharyya, Naval Engineers J., 85, 11 (1973).

    Google Scholar 

  113. C. L. Merkle and S. Deutsch, Appl. Mech. Rev., 45, 103 (1992).

    Google Scholar 

  114. N.K. Madavan, S. Deutsch and C. L. Merkle, J. Fluids Eng., 107, 370 (1985).

    Google Scholar 

  115. X. Lu, H. Kato and T. Kawamura, Turbulent drag reduction effect by hydrogen and oxygen microbubbles made by electrolysis, ASME 2006 2nd Joint US-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering (2006).

  116. S. J. Wu, C.H. Hsu and T. T. Lin, Ocean Eng., 34, 83 (2007).

    Google Scholar 

  117. J. Xu, M.R. Maxey and G.E. Karniadakis, J. Fluid Mech., 468, 271 (2002).

    Google Scholar 

  118. Y. Kodama, Effect microbubbles distribution on skin friction reduction, Proceedings of the International Symposium on Seawater Drag Reduction (1998).

  119. S. J. Wu, K. Ouyang and S.W. Shiah, Ocean Eng., 35, 856 (2008).

    Google Scholar 

  120. F. Forrest and G. A. Grierson, Paper Trade J., 92, 39 (1931).

    Google Scholar 

  121. Z. J. You, J.Z. Lin, X.M. Shao and W. F. Zhang, Chinese J. Chem. Eng., 12, 319 (2004).

    CAS  Google Scholar 

  122. P. F.W. Lee and G. G. Duffy, AIChE J., 22, 750 (1976).

    CAS  Google Scholar 

  123. I. Radin, Solid fluid drag reduction, Ph.D. Thesis, University of Missouri- Rolla (1974).

  124. I. Radin, J.L. Zakin and G.K. Patterson, AIChE J., 21, 358 (1975).

    CAS  Google Scholar 

  125. R. C. Vaseleski and A. B. Metzner, AIChE J., 20, 301 (1974).

    CAS  Google Scholar 

  126. A. L. Moyls and R.H. Sabersky, Int. J. Heat Mass Transfer, 21, 7 (1978).

    CAS  Google Scholar 

  127. J. S. Paschkewitz, Y. V. Dubief, C.D. Dimitropoulos, E. S. G. Shaqfeh and P. Moin, J. Fluid Mech., 518, 281 (2004).

    Google Scholar 

  128. K. J. Mysels, Flow of thickened fluids, US Patent, 2,492,173 (1949).

    Google Scholar 

  129. Y. Wang, B. Yu, J. L. Zakin and H. Shi, Adv. in Mech. Eng., 2011, 1 (2011).

    Google Scholar 

  130. S. Tamano, M. Itoh, K. Kato and K. Yokota, Phys. Fluids, 22, 055102 (2010).

    Google Scholar 

  131. I. Radin, J. L. Zakin and G.K. Patterson, Exploratory drag reduction studies in non-polar soap systems, in Viscous Drag Reduction, C. S. Wells Ed., Springer USA, 213 (1969).

  132. J. Rózanski, J. Non-Newtonian Fluid Mech., 166, 279 (2011).

    Google Scholar 

  133. J. J. Wei, Y. Kawaguchi, F.C. Li, B. Yu, J. L. Zakin, D. J. Hart and Y. Zhang, Int. J. Heat Mass Transfer, 52, 3547 (2009).

    CAS  Google Scholar 

  134. A. Krope and L. C. Lipus, Appl. Therm. Eng., 30, 833 (2010).

    CAS  Google Scholar 

  135. B. Yu and Y. Kawaguchi, Int. J. Heat Fluid Flow, 24, 491 (2003).

    CAS  Google Scholar 

  136. B. Yu, F. Li and Y. Kawaguchi, Int. J. Heat Fluid Flow, 25, 961 (2004).

    CAS  Google Scholar 

  137. H.W. Bewersdorff and D. Ohlendorf, Colloid Polym. Sci., 266, 941 (1988).

    CAS  Google Scholar 

  138. Y. Hu and E. Matthys, Rheol. Acta, 34, 450 (1995).

    CAS  Google Scholar 

  139. C. Kim, S.R. Park, H.K. Yoon and J. R. Haw, J. Chem. Eng. Jpn., 37, 1326 (2004).

    CAS  Google Scholar 

  140. H. Zhang, D. Wang and H. Chen, Arch. Appl. Mech., 79, 773 (2009).

    Google Scholar 

  141. Y. Qi, Y. Kawaguchi, Z. Lin, M. Ewing, R.N. Christensen and J.L. Zakin, Int. J. Heat Mass Transfer, 44, 1495 (2001).

    CAS  Google Scholar 

  142. L. Cheng, L. Liu and D. Mewes, Drag reduction with surfactants and polymeric additives in multiphase flow, in Advances in Multiphase Flow and Heat Transfer, L. Cheng and D. Mewes Eds., Bentham Science Publishers, USA, 149 (2012).

  143. D.D. Kale and A. B. Metzner, AIChE J., 22, 669 (1976).

    CAS  Google Scholar 

  144. L. C. Chou, Drag reducing cationic surfactant solutions for district heating and cooling systems, Ph.D. Thesis, The Ohio State University (1991).

  145. J. S. Lioumbas, A. A. Mouza and S.V. Paras, Chem. Eng. Sci., 61, 4605 (2006).

    CAS  Google Scholar 

  146. R. J. Wilkens and D.K. Thomas, Int. J. Multiphase Flow, 33, 134 (2007).

    CAS  Google Scholar 

  147. D. Ohlendorf, W. Interthal and H. Hoffmann, Rheol. Acta, 25, 468 (1986).

    CAS  Google Scholar 

  148. M. Hellsten, J. Surfactants and Detergents, 5, 65 (2002).

    CAS  Google Scholar 

  149. R.C. Chang and J. L. Zakin, Influence of polymer additives on velocity and temperature fields, Proceedings of the IUTAM Symposium (1985).

  150. S.H. Cho, C. S. Tae and M. Zaheeruddin, Energy Convers. Manage., 48, 913 (2007).

    CAS  Google Scholar 

  151. M. Hellsten and I. Harwigsson, A new biodegradable friction reducing additive (FRA) for district cooling networks, Proceedings of the 85th International District Heating and Cooling Association (IDHCA '94) (1994).

  152. J. L. Zakin and H. L. Lui, Chem. Eng. Commun., 23, 77 (1983).

    CAS  Google Scholar 

  153. E. Suali, A. B. Hayder, Z. Hasan and M. Rahman, J. Appl. Sci., 10, 2683 (2010).

    CAS  Google Scholar 

  154. J. G. Savins, Rheol. Acta, 6, 323 (1967).

    Google Scholar 

  155. J. L. Zakin, M. Brosh, A. Poreh and M. Warshavsky, Chem. Eng. Professional Symposium Series, 67, 85 (1971).

    CAS  Google Scholar 

  156. A. Al-Sarkhi, Int. J. Multiphase Flow, 39, 186 (2012).

    CAS  Google Scholar 

  157. A. Al-Sarkhi, E. Abu-Nada and M. Batayneh, Int. J. Multiphase Flow, 32, 926 (2006).

    CAS  Google Scholar 

  158. A. Al-sarkhi, M. E. Nakla and W. H. Ahmed, Int. J. Multiphase Flow, 37, 501 (2011).

    CAS  Google Scholar 

  159. M. Al-Yaari, A. Soleimani, B. Abu-Sharkh, U. Al-Mubaiyedh and A. Al-sarkhi, Int. J. Multiphase Flow, 35, 516 (2009).

    CAS  Google Scholar 

  160. R. L. J. Fernandes, B. M. Jutte and M. G. Rodriguez, Int. J. Multiphase Flow, 30, 1051 (2004).

    CAS  Google Scholar 

  161. N. Jia, M. Gourma and C. P. Thompson, Chem. Eng. Sci., 66, 4742 (2011).

    CAS  Google Scholar 

  162. D. Mowla and A. Naderi, Chem. Eng. Sci., 61, 1549 (2006).

    CAS  Google Scholar 

  163. J.Y. Xu, Y. X. Wu, H. Li, J. Guo and Y. Chang, Chem. Eng. J., 147, 235 (2009).

    CAS  Google Scholar 

  164. A. E. Green and R. S. Rivlin, Quarterly of Appl. Mathematics, 14, 299 (1956).

    Google Scholar 

  165. J.A. Wheeler and E. H. Wissler, Trans. Soc. Rheol., 10, 353 (1966).

    Google Scholar 

  166. P. Townsend, K. Walters and W.M. Waterhouse, J. Non-Newtonian Fluid Mech., 1, 107 (1976).

    Google Scholar 

  167. B. Gervang and P. S. Larsen, J. Non-Newtonian Fluid Mech., 39, 217 (1991).

    CAS  Google Scholar 

  168. S. Gao, Flow and heat transfer behavior of non-Newtonian fluids in rectangular ducts, Ph.D. Thesis, University of Illinois at Chicago (1993).

  169. C. Xie and J. P. Hartnett, Ind. Eng. Chem. Res., 31, 727 (1992).

    CAS  Google Scholar 

  170. B.K. Rao, Heat transfer to viscoelastic fluids in a 5:1 rectangular duct, Ph.D. Thesis, University of Illinois at Chicago (1988).

  171. B. K. Rao, Int. J. Heat Fluid Flow, 10, 334 (1989).

    CAS  Google Scholar 

  172. V. Bianco, O. Manca and S. Nardini, Int. J. Therm. Sci., 50, 341 (2011).

    CAS  Google Scholar 

  173. W. Duangthongsuk and S. Wongwises, Int. J. Heat Mass Transfer, 52, 2059 (2009).

    CAS  Google Scholar 

  174. K. S. Hwang, S.P. Jang and S.U. S. Choi, Int. J. Heat Mass Transfer, 52, 193 (2009).

    CAS  Google Scholar 

  175. D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong and S. Moon, Current Appl. Phys., 9, 119 (2009).

    Google Scholar 

  176. P. Kumar and R. Ganesan, Int. J. Civil and Environ. Eng., 6, 385 (2012).

    Google Scholar 

  177. J. Lee, R.D. Flynn, K.E. Goodson and J.K. Eaton, Convective heat transfer of nanofluids (DI water-Al2O3) in microchannels, ASMEJSME Thermal Engineering Summer Heat Transfer Conference (2007).

  178. S.E.B. Maïga, S. J. Palm, C.T. Nguyen, G. Roy and N. Galanis, Int. J. Heat Fluid Flow, 26, 530 (2005).

    Google Scholar 

  179. U. Rea, T. McKrell, L.W. Hu and J. Buongiorno, Int. J. Heat Mass Transfer, 52, 2042 (2009).

    CAS  Google Scholar 

  180. L. Syam Sundar, M.K. Singh and A.C.M. Sousa, Int. Commun. Heat Mass Transfer, 44, 7 (2013).

    CAS  Google Scholar 

  181. R. S. Vajjha, D.K. Das and D. P. Kulkarni, Int. J. Heat Mass Transfer, 53, 4607 (2010).

    CAS  Google Scholar 

  182. Z. S. Heris, S.G. Etemad and N.M. Esfahany, Int. Commun. Heat Mass Transfer, 33, 529 (2006).

    Google Scholar 

  183. B.H. Chun, H.U. Kang and S.H. Kim, Korean J. Chem. Eng., 25, 966 (2008).

    CAS  Google Scholar 

  184. P. Samira, Z. H. Saeed, S. Motahare and K. Mostafa, Korean J. Chem. Eng., 32, 609 (2015).

    CAS  Google Scholar 

  185. Z. H. Liu and L. Liao, Int. J. Therm. Sci., 49, 2331 (2010).

    CAS  Google Scholar 

  186. M. Drzazga, A. Gierczycki, G. Dzido and M. Lemanowicz, Chinese J. Chem. Eng., 21, 104 (2013).

    CAS  Google Scholar 

  187. J. C. Yang, F. C. Li, W.W. Zhou, Y.R. He and B. C. Jiang, Int. J. Heat Mass Transfer, 55, 3160 (2012).

    CAS  Google Scholar 

  188. F.C. Li, J. C. Yang, W.W. Zhou, Y.R. He, Y. M. Huang and B.C. Jiang, Thermochim. Acta, 556, 47 (2013).

    CAS  Google Scholar 

  189. J.C. Yang, F. C. Li, Y.R. He, Y. M. Huang and B. C. Jiang, Int. J. Heat Mass Transfer, 62, 303 (2013).

    CAS  Google Scholar 

  190. M.M. Kostic, Critical issues and application potentials in nanofluids research, ASME 2006 Multifunctional Nanocomposites International Conference (2006).

  191. M.M. Kostic, Critical issues in nanofluids research and application potentials in Nanofluids: Research, Development and Applications, Y. Zhang Ed., Nova Science Pub. Inc., New York, USA, 1 (2013).

  192. C. J. Walleck, Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient HWTC apparatus, M.S. Thesis, Northern Illinois University (2009).

  193. X. Wang, X. Xu and S.U. S. Choi, J. Thermophys. Heat Transfer, 13, 474 (1999).

    CAS  Google Scholar 

  194. C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher and H. Angue Mintsa, Int. J. Heat Fluid Flow, 28, 1492 (2007).

    CAS  Google Scholar 

  195. B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret and P. Estellé, Appl. Energy, 97, 876 (2012).

    CAS  Google Scholar 

  196. P. Keblinski, J. A. Eastman and D. G. Cahill, Mater. Today, 8, 36 (2005).

    CAS  Google Scholar 

  197. T. Maré, S. Halelfadl, O. Sow, P. Estellé, S. Duret and F. Bazantay, Exp. Therm. Fluid Sci., 35, 1535 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angnes Ngieng Tze Tiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiong, A.N.T., Kumar, P. & Saptoro, A. Reviews on drag reducing polymers. Korean J. Chem. Eng. 32, 1455–1476 (2015). https://doi.org/10.1007/s11814-015-0104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0104-0

Keywords

Navigation