Skip to main content
Log in

Design of a dividing wall column for fractionation of biodiesel

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study presents an efficient design method for DWC which can fractionate palm methyl esters (PME, biodiesel) into three more valuable product groups: a mixture of methyl laurate and methyl myristate as light-cut, pure methyl palmitate (≥99.5%) as middle cut, and the mixture of the remaining methyl esters (biodiesel), which has good low-temperature operability to such an extent as to come close to cold filter plugging point (CFPP) 0 °C, as heavy cut. The first step of the design was to determine numbers of stages for four sub-sections of DWC, liquid split ratio, and initial reflux ratio by the shortcut design, based on the component net flow model and the method of Fenske, Underwood, and Gilliland (FUG method). Secondly, optimal reflux ratio, vapor split ratio, locations of stages for feed and side product were found out by sensitivity analysis in rigorous simulation. The results from the simulation model developed by the method show that the reboiler duty of a single DWC is about 24% less than that of two simple columns in direct sequence and about 25% less than in indirect sequence. These energy saving ratios are almost close to 30%, which is popularly known as a typical value for energy saving of DWC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lv, Y. Cheng, L. Yang, Z. Yuan, H. Li and W. Luo, Fuel Process. Technol., 110, 61 (2013).

    Article  CAS  Google Scholar 

  2. B. R. Moser, In Vitro Cell. Dev. Biol. Plant, 45, 229 (2009).

    Article  CAS  Google Scholar 

  3. G.C. Gervajio, Bailey’s industrial oil and fat products, 6th Ed., Wiley, New Jersey, 1 (2005).

    Google Scholar 

  4. S. C. Smolinske, Handbook of food, drug, and cosmetic excipients, CRC Press, Boca Raton, FL, 75 (1992).

    Google Scholar 

  5. http://www.chemithon.com/Resources/pdfs/Surfactant.pdf (last accessed, August 2013).

  6. R. O. Dunn and B. R. Moser, The biodiesel handbook, second Ed., AOCS Press, Urbana, IL, 147 (2010).

    Google Scholar 

  7. J. Y. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim and J. S. Lee, Bioresour. Technol., 99, 1196 (2008).

    Article  CAS  Google Scholar 

  8. B. R. Moser, Energy Fuels, 22, 4301 (2008).

    Article  CAS  Google Scholar 

  9. T. C. Ming, N. Ramli, O. T. Lye, M. Said and Z. Kasim, Eur. J. Lipid Sci. Technol., 107, 505 (2005).

    Article  CAS  Google Scholar 

  10. Y. M. Choo, S. F. Cheng, C. L. Yung, L. N. N. Harrison, A. N. Ma and B. Yusof, US Patent, 8,246,699 (2012).

  11. S. Heck, V. Winterhoff, B. Gutsche, G. Fieg, U. Mueller and J. Rigal, US Patent, 7,064,223 (2006).

  12. Y. M. Choo, L. N. N. Harrison, C. L. Yung, M. H. Ng, C.W. Puah, A. M. Rusnani et al., http://palmoilis.mpob.gov.my/publications/TOT/TT-428.pdf (last accessed, August 2013).

  13. N. Asprion and G. Kaibel, Chem. Eng. Process, 49, 139 (2010).

    Article  CAS  Google Scholar 

  14. N. V. D. Long, S. H. Lee and M. Y. Lee, Chem. Eng. Process, 49, 825 (2010).

    Article  Google Scholar 

  15. N. V. D. Long and M. Y. Lee, Korean J. Chem. Eng., 29, 567 (2012).

    Article  Google Scholar 

  16. N. V. D. Long and M. Y. Lee, J. Chem. Eng. Japan, 45, 285 (2012).

    Article  Google Scholar 

  17. L. Q. Minh, N. V. D. Long and M. Y. Lee, Korean J. Chem. Eng., 29, 1500 (2012).

    Article  CAS  Google Scholar 

  18. S. G. Lee, N. V. D. Long and M. Y. Lee, Ind. Eng. Chem. Res., 51, 10021 (2012).

    Article  CAS  Google Scholar 

  19. Y. H. Kim, M. Nakaiwa and K. S. Hwang, Korean J. Chem. Eng., 19, 383 (2002).

    Article  CAS  Google Scholar 

  20. Y. H. Kim, K. S. Hwang and M. Nakaiwa, Korean J. Chem. Eng., 21, 098 (2004).

    Article  Google Scholar 

  21. I. Dejanović, Lj. Matijašević and Ž. Olujić, Chem. Eng. Process., 49, 559 (2010).

    Article  Google Scholar 

  22. K. T. Chu, L. Cadoret, C. C. Yu and J. D. Ward, Ind. Eng. Chem. Res., 50, 9221 (2011).

    Article  CAS  Google Scholar 

  23. R. O. Dunn, Soybean — Applications and technology, InTech, 211 (2011).

    Google Scholar 

  24. M. E. G. Gómez, R. H. Hildige, J. J. Leahy and B. Rice, Fuel, 81, 33 (2012).

    Article  Google Scholar 

  25. M. J. Ramos, C. M. Fernández, A. Casas, L. Rodríguez and Á. Pérez, Bioresour. Technol., 100, 261 (2009).

    Article  CAS  Google Scholar 

  26. K. A. Amminudin, R. Smith, Y. C. Thong and G. P. Towler, Chem. Eng. Res. Des., 79, 701 (2001).

    Article  CAS  Google Scholar 

  27. A. I. Kakhu and J. R. Flower, Chem. Eng. Res. Des., 66, 241 (1988).

    CAS  Google Scholar 

  28. G. Dünnebier and C. C. Pantelides, Ind. Eng. Chem. Res., 38, 162 (1999).

    Article  Google Scholar 

  29. J. A. Caballero and I. E. Grossman, Ind. Eng. Chem. Res., 40, 2260 (2001).

    Article  CAS  Google Scholar 

  30. P. Wang, H. Chen, Y. Wang, L. Zhang, K. Huang and S. J. Wang, Chem. Eng. Commun., 199, 608 (2012).

    Article  CAS  Google Scholar 

  31. I. J. Halvorsen and S. Skogestad, Ind. Eng. Chem. Res., 42, 605 (2003).

    Article  CAS  Google Scholar 

  32. Z. Fidkowski and L. Krolikowski, AIChE J., 32, 537 (1986).

    Article  CAS  Google Scholar 

  33. Z. Fidkowski and L. Krolikowski, AIChE J., 33, 643 (1987).

    Article  CAS  Google Scholar 

  34. C. Triantafyllou and R. Smith, Chem. Eng. Res. Des., 70, 118 (1992).

    CAS  Google Scholar 

  35. Y. H. Kim, Chem. Eng. J., 85, 289 (2002).

    Article  CAS  Google Scholar 

  36. N. V. D. Long and M. Y. Lee, Comput. Chem. Eng., 37, 119 (2012).

    Article  Google Scholar 

  37. V. K. Sangal, V. Kumar and I. M. Mishra, Comput. Chem. Eng., 40, 33 (2012).

    Article  CAS  Google Scholar 

  38. N. V. D. Long and M. Y. Lee, Korean J. Chem. Eng., 30, 286 (2013).

    Article  Google Scholar 

  39. I. J. Halvorsen, PhD thesis, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 352 (2001).

    Google Scholar 

  40. A. J. Underwood, Chem. Eng. Prog., 44, 603 (1948).

    CAS  Google Scholar 

  41. J. Stichlmair, Chem. Ing. Technol., 60, 747 (1988).

    Article  CAS  Google Scholar 

  42. I. J. Halvorsen and S. Skogestad, Ind. Eng. Chem. Res., 43, 3994 (2004).

    Article  CAS  Google Scholar 

  43. H. E. Edulgee, Hydrocarbon Process, 54, 120 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong-Koo Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H.J., Choi, S.H., Kim, T.Y. et al. Design of a dividing wall column for fractionation of biodiesel. Korean J. Chem. Eng. 32, 1229–1242 (2015). https://doi.org/10.1007/s11814-014-0347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0347-1

Keywords

Navigation