Skip to main content
Log in

Biodegradation potential of hydrocarbons in petroleum refinery effluents using a continuous anaerobic-aerobic hybrid system

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated a novel wastewater treatment method for the remediation of crude oil refinery effluents with large number of recalcitrant organic compounds. The treatment system consists of an up-flow anaerobic sludge blanket (UASB) reactor and an aerobic packed-bed biofilm reactor (PBBR) in combinatory pattern to increase the efficiency of treatment and to remove polycyclic aromatic hydrocarbons (PAHs) of the wastewater. The mean chemical oxygen demand (COD) removal efficiency in the UASB reactor and PBBR over 118 days of sampling was 68.48% and 38.28%, respectively. The total COD removal efficiency of the system was 81.07%. The GC-MS abundance and area values for each of the substances in the effluent decreased greatly from the corresponding value in the influent. Specifically, the PAHs were totally removed during the treatment process. This study presents a feasible technology for the treatment of refinery effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Gargouri, F. Karray, N. Mhiri, F. Aloui, S. Sayadi J. Hazard. Mater., 189, 427 (2011).

    Article  CAS  Google Scholar 

  2. H. Baheri and P. Meysami, J. Hazard. Mater. B, 89, 279 (2001).

    Article  Google Scholar 

  3. C. E. Cerniglia, Biodegradation, 3, 351 (1992).

    Article  CAS  Google Scholar 

  4. United States Environmental Protection Agency, Remediation Technologies Screening Matrix and Reference Guide, EPA 542-B-93-005 (1993).

  5. A. Chavan and S. Mukherji, J. Hazard. Mater., 154, 63 (2008).

    Article  CAS  Google Scholar 

  6. R.D. Tyagi, F.T. Tran and A.K.M.M. Chowdhury, Environ. Pollut., 76, 61 (1992).

    Article  CAS  Google Scholar 

  7. G. Kassab, M. Halalsheh, A. Klapwijk, M. Fayyad and J.B. van Lier, Bioresour. Technol., 101, 3299 (2010).

    Article  CAS  Google Scholar 

  8. A. van Haandel and G. Lettinga, Anaerobic Sewage Treatment, Wiley (1994).

    Google Scholar 

  9. M. von Sperling and C.A. L. Chernicharo, Biological Wastewater Treatment in Warm Climate Regions, IWA Publishing, (2005).

    Google Scholar 

  10. J. Berrueta, A. Gutikrrez and G. Fueyo, J. Chem. Technol. Biotechnol., 67, 302 (1996).

    Article  CAS  Google Scholar 

  11. G. Liua, Zh. Yea, K. Tong and Y. Zhang, Biochem. Eng. J., 72, 48 (2013).

    Article  Google Scholar 

  12. A. Schellinkhout and E. Osorio, Long-term experience with the UASB technology for sewage treatment on large scale, in: 7 th Int. Symp. on Anaerobic Digestion, The Netherlands, 251 (1994).

    Google Scholar 

  13. P. Bhunia and M.M. Ghangrekar, Bioresour. Technol., 99, 2132 (2008).

    Article  CAS  Google Scholar 

  14. J. Liu, J.E. Zuo, Y. Yang, S.Q. Zhu, S.L. Kuang and K. J. Wang, J. Environ. Sci., 22, 777 (2010).

    Article  CAS  Google Scholar 

  15. H.W. Sun, Q. Yang, Y.Z. Peng, X.N. Shi, S.Y. Wang and S. J. Zhang, J. Environ. Sci., 22, 481 (2010).

    Article  CAS  Google Scholar 

  16. M. Farhadian, D. Duchez, C. Vachelard and C. Larroche, Water Res., 42, 1325 (2008).

    Article  CAS  Google Scholar 

  17. A. R. Pedersen and E. Arvin, Biodegradation, 6, 109 (1995).

    Article  CAS  Google Scholar 

  18. N. K. Sahoo, K. Pakshirajan and P. K. Ghosh, J. Hazard. Mater., 190, 729 (2011).

    Article  CAS  Google Scholar 

  19. J. Paca, M. Halecky, J. Barta and R. Bajpai, J. Hazard. Mater., 163, 848 (2009).

    Article  CAS  Google Scholar 

  20. C.C. Teodosiu, M.D. Kennedy, H. A. Van Straten and J. C. Schippers, Water Res., 33, 2172 (1999).

    Article  CAS  Google Scholar 

  21. G. C. Jou and G. C. Huang, Adv. Environ. Res., 7, 463 (1999).

    Article  Google Scholar 

  22. W. Sokol, Biochem. Eng. J., 15, 1 (2003).

    Article  CAS  Google Scholar 

  23. L. Xianling, W. Jianping, Y. Qing and Zh. Xueming, Biochem. Eng. J., 27, 40 (2005).

    Article  Google Scholar 

  24. F. Ghavipanjeh and J. Shayegan, IJCHE, 1, 3 (2004).

    Google Scholar 

  25. O.B.D. Thabet, H. Bouallagui, J. L. Cayol, B. Ollivier, M. L. Fardeau and M. Hamdi J. Hazard. Mater., 167, 1133 (2009).

    Article  CAS  Google Scholar 

  26. F. Widdel and R. Rabus, Curr. Opin. Biotechnol., 12, 259 (2001).

    Article  CAS  Google Scholar 

  27. F. Aeckersberg, F. Bak and F. Widdel, Arch. Microbiol., 156, 5 (1991).

    Article  CAS  Google Scholar 

  28. P. Ehrenreich, A. Behrends, J. Harder and F. Widdel, Arch. Microbiol., 173, 58 (2000).

    Article  CAS  Google Scholar 

  29. P. Rueter, R. Rabus, H. Wilkes, F. Aeckersberg, F. A. Rainey, H.W. Jannasch and F. Widdel, Nature, 372, 455 (1994).

    Article  CAS  Google Scholar 

  30. R. T. Anderson and D. R. Lovley, Nature, 404, 722 (2000).

    Article  CAS  Google Scholar 

  31. K. Zengler, H.H. Richnow, R. Rosselló-Mora, W. Michaelis and F. Widdel, Nature, 401, 266 (1999).

    Article  CAS  Google Scholar 

  32. S. Harayama, H. Kishira, Y. Kasai and K. Shutsubo, J. Mol. Microbiol. Biotechnol., 1, 63 (1999).

    CAS  Google Scholar 

  33. D.T. Gibson, Microbial degradation of organic compounds, New York, Marcel Dekker (1984).

    Google Scholar 

  34. S.M. Bamforth and I. Singleton, J. Chem. Technol. Biotechnol., 80, 723 (2005).

    Article  CAS  Google Scholar 

  35. Ch. Zhao, Effect of Temperature on Biogas Production in Anaerobic Treatment of Domestic Wastewater UASB System in Hammarby Sjöstadsverk, Masters Level Degree Project (2011).

    Google Scholar 

  36. Metcalf, Eddy, Wastewater Engineering: Treatment and Reuse, Chapter 10, 4th Ed., McGraw-Hill, New York (2004).

    Google Scholar 

  37. H. Shim, E. Shin and S.T. Yang, Adv. Environ. Res., 7, 203 (2002).

    Article  CAS  Google Scholar 

  38. D. Trzesicka-Mlynarz and O. P. Ward, Can. J. Microbiol., 41, 470 (1995).

    Article  CAS  Google Scholar 

  39. W. Stringfellow, M. Alvarez Cohen and L. Alvarez Cohen, Water Res., 33, 2535 (1999).

    Article  CAS  Google Scholar 

  40. APHA, AWWA & WPCF, Standard Methods for the examination of water and wastewater, 18th Ed. American Public Health Association, Washington, D.C. (1992).

    Google Scholar 

  41. D.Z. Maat and L.H.A. Habbets, Pulp and Paper Canada, 88, T410–T414 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirpour, N., Mousavi, S.M. & Shojaosadati, S.A. Biodegradation potential of hydrocarbons in petroleum refinery effluents using a continuous anaerobic-aerobic hybrid system. Korean J. Chem. Eng. 32, 874–881 (2015). https://doi.org/10.1007/s11814-014-0307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0307-9

Keywords

Navigation