Skip to main content
Log in

Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We did a comparative study on the adsorption capacity of Cr (VI) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (VI) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0 mg/l, the removal efficiency of Cr (VI) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a K L and K F value of 1.217 L/mg and 18.14 mg1−nLn/g functionalized CNT, while 2.365 L/mg and 2.307 mg1−nLn/g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Gupta, S. Agarwal and T.A. Saleh, Water Res., 45, 1 (2011).

    Article  Google Scholar 

  2. Y. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu and B. Wei, Chem. Phys. Lett., 357, 263 (2002).

    Article  CAS  Google Scholar 

  3. D. B. Kaufman, Am. J. Dis. Child., 119, 374 (1970).

    Article  CAS  Google Scholar 

  4. V. M. Boddu, K. Abburi, J. L. Talbott, E. D. Smith and R. Haasch, Water Res., 42, 633 (2008).

    Article  CAS  Google Scholar 

  5. M. I. Kandah and J. L. Meunier, J. Hazard. Mater., 146, 283 (2007).

    Article  CAS  Google Scholar 

  6. S. H. Hsieh, J. J. Horng and C. K. Tsai, J. Mater. Res., 21, 1269 (2006).

    Article  CAS  Google Scholar 

  7. M. I. Panoyotova, Waste Manage., 21, 671 (2001).

    Article  Google Scholar 

  8. K. Kadirvelu, K. Thamaraiselvi and C. Namasivayam, Chem. Phys. Lett., 350, 412 (2001).

    Article  Google Scholar 

  9. S. E. Kuh and D. S. Kim, Environ. Technol., 21, 883 (2000).

    Article  CAS  Google Scholar 

  10. Y. J. Park, K. H. Jung and K. K. Park, J. Colloid Interface Sci., 171, 205 (1995).

    Article  CAS  Google Scholar 

  11. S.V. Dimitrova and D. R. Mehandgiev, Water Res., 32, 3289 (1998).

    Article  CAS  Google Scholar 

  12. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  13. R. S. Rouff and D. C. Lorents, Carbon, 33, 925 (1995).

    Article  Google Scholar 

  14. T.W. Ebbesen, H. Z. Lezee, H. Hiura, J.W. Bennett, H. F. Ghsrmi and T. Thio, Nature, 382, 54 (1996).

    Article  CAS  Google Scholar 

  15. M. Terrones, Annu. Rev. Mater. Res., 33. 419 (2003).

    Article  CAS  Google Scholar 

  16. Y. H. Li, Y. Q. Zhu, Y.M. Zhao, D. H. Wu, Z. K. Luan, Diam Relat Mater., 15, 90 (2006).

    Article  Google Scholar 

  17. C. Changlun, J. Hu, D. Xn, X. Tan, Y. Meng and X. Wang, J. Colloid Interface Sci., 323, 33 (2008).

    Article  Google Scholar 

  18. N. M. Mubarak, M. Ruthiraan, J. N. Sahu, E. C. Abdullah, N. S. Jayakumar, N. R. Sajuni and J. Tan, Inter. J. Nanosci., 12(6), 1350044 (2013).

    Article  Google Scholar 

  19. N. M. Mubarak, R. F. Alicia, E. C. Abdullah, J. N. Sahu, A. B. Ayu Haslija and J. Tan, J. Environ. Chem. Eng., 1, 486 (2013).

    Article  CAS  Google Scholar 

  20. C. H. Wu, J. Colloid Interface Sci., 311, 338 (2007).

    Article  CAS  Google Scholar 

  21. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, Carbon, 46, 833 (2008).

    Article  CAS  Google Scholar 

  22. N. M. Mubarak, F. Yusof and M. F. Alkhatib, Chem. Eng. J., 168, 461 (2011).

    Article  CAS  Google Scholar 

  23. K. Balasubramanian and M. Burghard, Small, 1, 180 (2005).

    Article  CAS  Google Scholar 

  24. M. M. Oye, S. Yim, A. Fu, K. Schwanfelder, M. Meyyapan and C. V. Nguyen, J. Nanosci. Nanotechnol., 10, 4082 (2010).

    Article  CAS  Google Scholar 

  25. S. Yang, J. Li, D. Hu and X. Wang, J. Hazard. Mater., 166, 109 (2009).

    Article  CAS  Google Scholar 

  26. K. Laszlo, P. Podkoscielny and A. Dabrowski, Appl. Surf. Sci., 252, 5752 (2006).

    Article  CAS  Google Scholar 

  27. S. J. Wang, W. X. Hu, D.W. Liao, C. F. Ng and C. Au, Catal. Today, 93, 711 (2005).

    Google Scholar 

  28. Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Z. Wang and Y. Xia, J. Hazard. Mater., 177, 876 (2010).

    Article  CAS  Google Scholar 

  29. J. Zhang, H. L. Zou, Q. Qing, Y. L. Yang, Q.W. Li, Z. F. Liu, X.Y. Guo and Z. L. Du, J. Phys. Chem. B., 107, 3712 (2003).

    Article  CAS  Google Scholar 

  30. A. E. Agboola, R.W. Pike, T.A. Hertwig and H. H. Lou, Clean Technol. Environ. Policy, 9, 289 (2007).

    Article  CAS  Google Scholar 

  31. L. H. Yan, D. Zechao, D. Jun, W. Dehai, L. Zhaokun and Z. Yanqiu, Water Res., 39, 605 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabisab Mujawar Mubarak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubarak, N.M., Thines, R.K., Sajuni, N.R. et al. Adsorption of chromium (VI) on functionalized and non-functionalized carbon nanotubes. Korean J. Chem. Eng. 31, 1582–1591 (2014). https://doi.org/10.1007/s11814-014-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0101-8

Keywords

Navigation