Skip to main content
Log in

Computational fluid dynamics simulations of interphase heat transfer in a bubbling fluidized bed

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Numerical simulations based on the Eulerian-Eulerian approach have been performed in the study of interphase heat transfer in a gas solid fluidized bed. The kinetic theory of granular flow (KTGF) has been used to describe the solid phase rheology. An assessment of drag models in the prediction of heat transfer coefficients shows that no major difference is observed in the choice of the drag model used. Fluctuations of the interphase heat transfer coefficient have been found to be closely related to the bubble motion in the bed. Effects of the wall boundary condition, inlet gas velocity, initial bed height and particle size on the predicted heat transfer coefficient have also been investigated. Typical temperature profiles in the bed show that thermal saturation is attained instantaneously close to the gas distributor. Simulated results of the coefficients are in fair agreement with those reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. H. S. Mickley and D. F. Fairbanks, AIChE J., 1, 374 (1955).

    Article  CAS  Google Scholar 

  2. R. S. Brodkey, D. S. Kim and W. Sidner, Int. J. Heat Mass Transfer, 34, 2327 (1991).

    Article  CAS  Google Scholar 

  3. R. S. Figliola and D. E. Beasley, Chem. Eng. Sci., 48, 2901 (1993).

    Article  CAS  Google Scholar 

  4. R. Yusuf, B. Halvorsen and M.C. Melaaen, Int. J. Multiphase Flow, 42, 9 (2012).

    Article  CAS  Google Scholar 

  5. J. Kuipers, W. Prins and W. Swaaij, AIChE J., 38, 1079 (1992).

    Article  CAS  Google Scholar 

  6. M. Syamlal and D. Gidaspow, AIChE J., 31, 127 (1985).

    Article  CAS  Google Scholar 

  7. D. Patil, J. Smit, M. Sint Annaland and J. Kuipers, AIChE J., 52, 58 (2006).

    Article  CAS  Google Scholar 

  8. L. Armstrong, S. Gu and K. Luo, Int. J. Heat Mass Transfer, 53, 4949 (2010).

    Article  CAS  Google Scholar 

  9. C. Delvosalle and J. Vanderschuren, Chem. Eng. Sci., 40, 769 (1985).

    Article  CAS  Google Scholar 

  10. J. Chang, G. Wang, J. Gao, K. Zhang, H. Chen and Y. Yang, Powder Technol., 217, 50 (2012).

    Article  CAS  Google Scholar 

  11. Y. Yang, J. Yang, W. Chen and S. Rong, Ind. Eng. Chem. Res., 41, 2579 (2002).

    Article  CAS  Google Scholar 

  12. D. Kunii and O. Levenspiel, Fluidization engineering, Butterworth-Heinemann Boston (1991).

    Google Scholar 

  13. Y. Kaneko, T. Shiojima and M. Horio, Chem. Eng. Sci., 54, 5809 (1999).

    Article  CAS  Google Scholar 

  14. Y. Behjat, S. Shahhosseini and S. H. Hashemabadi, International Communications in Heat and Mass Transfer, 35, 357 (2008).

    Article  Google Scholar 

  15. M. Hamzehei, H. Rahimzadeh and G. Ahmadi, Ind. Eng. Chem. Res., 49, 5110 (2010).

    Article  CAS  Google Scholar 

  16. X. Z. Chen, Z.H. Luo, W. C. Yan, Y. H. Lu and I. S. Ng, AIChE J., 57, 3351 (2011).

    Article  CAS  Google Scholar 

  17. M. Syamlal and T. J. O’Brien, AIChE Symposium Series, 85, 22 (1989).

    Google Scholar 

  18. M. Syamlal and T. J. O’Brien, The derivation of a drag coefficient formula from velocity-voidage correlations, US Department of Energy, Morgantown (1987).

    Google Scholar 

  19. D. Gidaspow, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press (1994).

    Google Scholar 

  20. J. Cao and G. Ahmadi, Int. J. Multiphase Flow, 21, 1203 (1995).

    Article  CAS  Google Scholar 

  21. S. Benyahia, M. Syamlal and T. J. O’Brien, Powder Technol., 162, 166 (2006).

    Article  CAS  Google Scholar 

  22. C. Lun, S. Savage, D. Jeffrey and N. Chepurniy, J. Fluid Mech., 140, 223 (1984).

    Article  Google Scholar 

  23. D.G. Schaeffer, Journal of Differential Equations, 66, 19 (1987).

    Article  Google Scholar 

  24. D. Ma and G. Ahmadi, J. Chem. Phys., 84, 3449 (1986).

    Article  CAS  Google Scholar 

  25. D. Gunn, Int. J. Heat Mass Transfer, 21, 467 (1978).

    Article  Google Scholar 

  26. W. Ranz and W. Marshall, Chem. Eng. Prog., 48, 141 (1952).

    CAS  Google Scholar 

  27. N. Wakao, S. Kaguei and T. Funazkri, Chem. Eng. Sci., 34, 325 (1979).

    Article  CAS  Google Scholar 

  28. A. Cybulski, M. J. Van Dalen, J.W. Verkerk and P. J. Van Den Berg, Chem. Eng. Sci., 30, 1015 (1975).

    Article  CAS  Google Scholar 

  29. P. A. Nelson and T. R. Galloway, Chem. Eng. Sci., 30, 1 (1975).

    Article  CAS  Google Scholar 

  30. B. Bird, W. Stewart and E. Lightfoot, Transport phenomena, revised 2nd Ed., John Wiley & Sons, Inc. (2006).

    Google Scholar 

  31. N.G. Deen, S. H. L. Kriebitzsch, M. A. Van der Hoef and J. A. M. Kuipers, Chem. Eng. Sci., 81, 329 (2012).

    Article  CAS  Google Scholar 

  32. J. Sun, Y. Zhou, C. Ren, J. Wang and Y. Yang, Chem. Eng. Sci., 66, 4972 (2011).

    Article  CAS  Google Scholar 

  33. F. Taghipour, N. Ellis and C. Wong, Chem. Eng. Sci., 60, 6857 (2005).

    Article  CAS  Google Scholar 

  34. P. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).

    Article  CAS  Google Scholar 

  35. T. Li, J. Grace and X. Bi, Powder Technol., 203, 447 (2010).

    Article  CAS  Google Scholar 

  36. R. Yusuf, M. C. Melaaen and V. Mathiesen, Chem. Eng. Technol., 28, 13 (2005).

    Article  CAS  Google Scholar 

  37. S. Cloete, S. T. Johansen and S. Amini, Powder Technol., 239, 21 (2013).

    Article  CAS  Google Scholar 

  38. C. Loha, H. Chattopadhyay and P. K. Chatterjee, Chem. Eng. Sci., 75, 400 (2012).

    Article  CAS  Google Scholar 

  39. F. Vejahati, N. Mahinpey, N. Ellis and M. B. Nikoo, Can. J. Chem. Eng., 87, 19 (2009).

    Article  CAS  Google Scholar 

  40. L.M. Armstrong, S. Gu and K. H. Luo, Int. J. Multiphase Flow, 36, 916 (2010).

    Article  CAS  Google Scholar 

  41. J. R. Grace, Powder Technol., 113, 242 (2000).

    Article  CAS  Google Scholar 

  42. J. S. M. Botterill, Fluid-bed heat transfer: Gas-fluidized bed behaviour and its influence on bed thermal properties, Academic Press, London (1975).

    Google Scholar 

  43. C. Loha, H. Chattopadhyay and P. K. Chatterjee, Particuology, 11, 673 (2013).

    Article  Google Scholar 

  44. J. Tuot and R. Clift, AIChE Symp. Ser., 78 (1973).

    Google Scholar 

  45. O.-a. Jaiboon, B. Chalermsinsuwan, L. Mekasut and P. Piumsomboon, Powder Technol., 233, 215 (2013).

    Article  CAS  Google Scholar 

  46. A. P. Baskakov, V.G. Tuponogov and N. F. Filippovsky, Powder Technol., 45, 113 (1986).

    Article  Google Scholar 

  47. O. Olaofe, M. Van der Hoef and J. Kuipers, Chem. Eng. Sci., 66, 2764 (2011).

    Article  CAS  Google Scholar 

  48. X. Z. Chen, D. P. Shi, X. Gao and Z. H. Luo, Powder Technol., 205, 276 (2011).

    Article  CAS  Google Scholar 

  49. J. Wang, C. Ren, Y. Yang and L. Hou, Ind. Eng. Chem. Res., 48, 8508 (2009).

    Article  CAS  Google Scholar 

  50. S. Cloete, S. T. Johansen and S. Amini, Powder Technol., 239, 21 (2013).

    Article  CAS  Google Scholar 

  51. M. L. DeChellis, J.R. Griffin and M. E. Muhle, US Patent, 5, 405, 922 (1995).

    Google Scholar 

  52. C. Van Heerden, A. Nobel and D. Van Krevelen, Ind. Eng. Chem., 45, 1237 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingdai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lungu, M., Sun, J., Wang, J. et al. Computational fluid dynamics simulations of interphase heat transfer in a bubbling fluidized bed. Korean J. Chem. Eng. 31, 1148–1161 (2014). https://doi.org/10.1007/s11814-014-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0022-6

Keywords

Navigation