Skip to main content
Log in

MP-PIC investigation of the multi-scale gas-solid flow in the bubbling fluidized bed

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Numerical study of the dense gas-solid flow in a bubbling fluidized bed has been conducted via the multiphase particle-in-cell approach. Based on the numerical results, the mesoscale bubble dynamics combined with the particle-scale information of gas-solid phase are explored to understand the multi-scale flow property of the gas-solid phase in this apparatus. Several tips regarding the multi-scale gas-solid flow can be obtained as: (i) Bubble volume in the bed behaves with a log-normal distribution pattern and the largest bubble appears in the central part of the bed. (ii) The horizontal chord length of bubbles is the largest in the central region but small near the wall. Large vertical chord length of bubbles exists near the bed wall. (iii) Elongation of the rising bubbles in the upper part of the bed enlarges the aspect ratio. Large aspect ratio and small pressure of the bubbles appear near the bed wall. Bubble pressure decreases along the bed height. (iv) Large particle Reynolds number can be observed in the dome and tail of the bubbles while small value appears at both sides of bubbles. The operating para meters alter the bubble dynamics and also the particle-scale information of solid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Alsmari, T. A., Grace, J. R., Bi, X. T. 2016. Effects of particle properties on entrainment and electrostatics in gas-solid fluidized beds. Powder Technol, 290: 2–10.

    Article  Google Scholar 

  • Busciglio, A., Vella, G., Micale, G. 2012. On the bubbling dynamics of binary mixtures of powders in 2D gas-solid fluidized beds. Powder Technol, 231: 21–34.

    Article  Google Scholar 

  • Caram, H. S., Hsu, K. K. 1986. Bubble formation and gas leakage in fluidized beds. Chem Eng Sci, 41: 1445–1453.

    Article  Google Scholar 

  • Chew, J. W., Hrenya, C. M. 2011. Link between bubbling and segregation patterns in gas-fluidized beds with continuous size distributions. AIChE J, 57: 3003–3011.

    Article  Google Scholar 

  • Cundall, P. A., Strack, O. D. L. 1979. A discrete numerical model for granular assemblies. Géotechnique, 29: 47–65.

    Article  Google Scholar 

  • Feng, M., Li, F., Wang, W., Li, J. 2018. Parametric study for MP-PIC simulation of bubbling fluidized beds with Geldart A particles. Powder Technol, 328: 215–226.

    Article  Google Scholar 

  • Gidaspow, D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press.

  • Gu, X., Wen, J., Wang, M., Jian, G., Zheng, G., Wang, S. 2019. Numerical investigation of unsteady particle deposition in a realistic human nasal cavity during inhalation. Exp Comput Multiph Flow, 1: 39–50.

    Article  Google Scholar 

  • Gui, N., Fan, J. 2011. Numerical study of particle mixing in bubbling fluidized beds based on fractal and entropy analysis. Chem Eng Sci, 66: 2788–2797.

    Article  Google Scholar 

  • Gui, N., Yang, X., Tu, J., Jiang, S. 2018. A fine LES-DEM coupled simulation of gas-large particle motion in spouted bed using a conservative virtual volume fraction method. Powder Technol, 330: 174–189.

    Article  Google Scholar 

  • Hadi, B., van Ommen, J. R., Coppens, M. O. 2012. Enhanced particle mixing in pulsed fluidized beds and the effect of internals. Ind Eng Chem Res, 51: 1713–1720.

    Article  Google Scholar 

  • Harris, S. E., Crighton, D. G. 1994. Solitons, solitary waves, and voidage disturbances in gas-fluidized beds. J Fluid Mech, 266: 243–276.

    Article  MathSciNet  Google Scholar 

  • He, Y., Wang, T., Deen, N., van Sint Annaland, M., Kuipers, H., Wen, D. 2012. Discrete particle modeling of granular temperature distribution in a bubbling fluidized bed. Particuology, 10: 428–437.

    Article  Google Scholar 

  • Hernández-Jiménez, F., Sánchez-Delgado, S., Gómez-García, A., Acosta-Iborra, A. 2011. Comparison between two-fluid model simulations and particle image analysis & velocimetry (PIV) results for a two-dimensional gas-solid fluidized bed. Chem Eng Sci, 66: 3753–3772.

    Article  Google Scholar 

  • Hu, C., Luo, K., Wang, S., Sun, L., Fan, J. 2019. Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chem Eng Sci, 195: 693–706.

    Article  Google Scholar 

  • Issa, R. I. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys, 62: 40–65.

    Article  MathSciNet  Google Scholar 

  • Laverman, J. A., Fan, X., Ingram, A., van Sint Annaland, M., Parker, D. J., Seville, J. P. K., Kuipers, J. A. M. 2012. Experimental study on the influence of bed material on the scaling of solids circulation patterns in 3D bubbling gas-solid fluidized beds of glass and polyethylene using positron emission particle tracking. Powder Technol, 224: 297–305.

    Article  Google Scholar 

  • Li, J., Luo, Z., Lan, X., Xu, C., Gao, J. 2013. Numerical simulation of the turbulent gas-solid flow and reaction in a polydisperse FCC riser reactor. Powder Technol, 237: 569–580.

    Article  Google Scholar 

  • Li, T., Dietiker, J. F., Zhang, Y., Shahnam, M. 2011. Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle. Chem Eng Sci, 66: 6220–6231.

    Article  Google Scholar 

  • Li, T., Zhang, Y., Hernández-Jiménez, F. 2016. Investigation of particle-wall interaction in a pseudo-2D fluidized bed using CFD-DEM simulations. Particuology, 25: 10–22.

    Article  Google Scholar 

  • Liang, Y., Zhang, Y., Li, T., Lu, C. 2014. A critical validation study on CPFD model in simulating gas-solid bubbling fluidized beds. Powder Technol, 263: 121–134.

    Article  Google Scholar 

  • Lin, J., Luo, K., Sun, L., Wang, S., Hu, C., Fan, J. 2019. Numerical investigation of nickel-copper oxygen carriers in chemical-looping combustion process with zero emission of CO and H2.. Energy Fuel, 33: 12096–121

    Article  Google Scholar 

  • Liu, X., Gui, N., Wu, H., Yang, X., Tu, J., Jiang, S. 2020. Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction. Exp Comput Multiph Flow, 2: 151–161.

    Article  Google Scholar 

  • Rong, L., Zhan, J., Wu, C. 2012. Effect of various parameters on bubble formation due to a single jet pulse in two-dimensional coarse-particle fluidized beds. Adv Powder Technol, 23: 398–405.

    Article  Google Scholar 

  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev, 91: 99–164.

    Article  Google Scholar 

  • Snider, D. M. 2001. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comput Phys, 170: 523–549.

    Article  Google Scholar 

  • Snider, D. M., Clark, S. M., O’Rourke, P. J. 2011. Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chem Eng Sci, 66: 1285–1295.

    Article  Google Scholar 

  • Snider, D., Banerjee, S. 2010. Heterogeneous gas chemistry in the CPFD Eulerian-Lagrangian numerical scheme (ozone decomposition). Powder Technol, 199: 100–106.

    Article  Google Scholar 

  • Tang, T., He, Y., Tai, T., Wen, D. 2017. DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. Chem Eng Sci, 172: 79–99.

    Article  Google Scholar 

  • Wang, S., Luo, K., Hu, C., Sun, L., Fan, J. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technol, 333: 304–316.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018. A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Tran, 118: 275–288.

    Article  Google Scholar 

  • Xu, Y., Li, T., Musser, J., Liu, X., Xu, G., Rogers, W. A. 2017. CFD-DEM modeling the effect of column size and bed height on minimum fluidization velocity in micro fluidized beds with Geldart B particles. Powder Technol, 318: 321–328.

    Article  Google Scholar 

  • Yan, Y., Li, X., Ito, K. 2020. Numerical investigation of indoor particulate contaminant transport using the Eulerian-Eulerian and Eulerian-Lagrangian two-phase flow models. Exp Comput Multiph Flow, 2: 31–40.

    Article  Google Scholar 

  • Yang, L., Padding, J. T., Buist, K. A., Kuipers, J. A. M. 2017. Three-dimensional fluidized beds with rough spheres: Validation of a two fluid model by magnetic particle tracking and discrete particle simulations. Chem Eng Sci, 174: 238–258.

    Article  Google Scholar 

  • Yang, S., Luo, K., Chew, J. W. 2018b. Three-dimensional axial dispersion dynamics of granular flow in the rolling-regime rotating drum. Powder Technol, 332: 131–138.

    Article  Google Scholar 

  • Yang, S., Wang, H., Wei, Y., Hu, J., Chew, J. W. 2019a. Numerical investigation of bubble dynamics during biomass gasification in a bubbling fluidized bed. ACS Sustainable Chem Eng, 7: 12288–12303.

    Google Scholar 

  • Yang, S., Wang, H., Wei, Y., Hu, J., Chew, J. W. 2019b. Particle-scale modeling of biomass gasification in the three-dimensional bubbling fluidized bed. Energ Convers Manage, 196: 1–17.

    Article  Google Scholar 

  • Yang, S., Wang, H., Wei, Y., Hu, J., Chew, J. W. 2019c. Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier. Energy, 181: 1075–1093.

    Article  Google Scholar 

  • Yang, S., Wu, H., Lin, W., Li, H., Zhu, Q. 2018a. An exploratory study of three-dimensional MP-PIC-based simulation of bubbling fluidized beds with and without baffles. Particuology, 39: 68–77.

    Article  Google Scholar 

  • Yang, S., Zhou, T., Wei, Y., Hu, J., Wang, H. 2019d. Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energ Convers Manage, 198: 111848.

    Article  Google Scholar 

  • Zhu, L., Liu, Y., Tang, J., Luo, Z. 2019. A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers. Chem Eng Sci, 204: 228–245.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China-Yunnan Joint Fund (Grant No. U1602272) and National Natural Science Foundation of China (Grant No. 51966007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiliang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Yang, S. & Wang, H. MP-PIC investigation of the multi-scale gas-solid flow in the bubbling fluidized bed. Exp. Comput. Multiph. Flow 3, 289–302 (2021). https://doi.org/10.1007/s42757-020-0067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0067-1

Keywords

Navigation