Skip to main content
Log in

Polymer induced turbulent drag reduction using pressure and gravity-driven methods

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Drag reduction using polymer additives has been industrially important for enhancing the flow rates and hence the power consumption. In this study, various polymers like PEG, PAM, HPMC were employed with solvents like water and lubricating oil for drag reduction using gravity and pressure driven methods. The optimum set of parameters for maximum drag reduction—polymer concentration, nature of polymer, polymer combinations, exit pipe diameter, solvent-polymer combinations, experimental methodology—were obtained and then the results validated with well known concepts like the Toms effect and Virk's maximum drag reduction asymptote.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Toms, Proceedings of the international congress on rheology, North-Holland (1949).

    Google Scholar 

  2. B. A. Toms, Phys. Fluids, 20, S3 (1977).

    Article  Google Scholar 

  3. K. J. Mysels, US Patent, 2,492,173 (1949).

  4. P. S. Virk, AIChE J., 21, 625 (1975).

    Article  CAS  Google Scholar 

  5. P. S. Virk, E.W. Merril, H. S. Mickley, K. A. Smith and E. L. Mollo-Christensen, J. Fluid Mech., 20, 22 (1967).

    Google Scholar 

  6. K. Gasljevic, G. Aguilar and E. F. Matthys, J. Non-Newtonian Fluid Mechanics, 84(2–3), 131 (1999).

    Article  CAS  Google Scholar 

  7. R. Sureshkumar, A. N. Beris and R. A. Handler, Phys. Fluids, 9(3), 743 (1997).

    Article  CAS  Google Scholar 

  8. C. D. Dimitropoulos, R. Sureshkumar and A. N. Beris, J. Non-Newtonian Fluid Mechanics, 79(2–3), 433 (1998).

    Article  CAS  Google Scholar 

  9. P. K. Ptasinski, B. J. Boersma, F. T. M. Nieuwstadt, M. A. Hulsen, H. A. A. Van den Brule and J. C. R. Hunt, J. Fluid Mech., 490, 251 (2003).

    Article  CAS  Google Scholar 

  10. T. Min, J.Y. Yoo, H. Choi and D. D. Joseph, J. Fluid Mech., 486, 213 (2003).

    Article  CAS  Google Scholar 

  11. J.M. J. Toonder, M. A. Hülsen, G. D. C. Kuiken and F.T. M. Nieuwstadt, J. Fluid Mech., 337, 193 (1997).

    Article  Google Scholar 

  12. T. Wei and W.W. Willmarth, J. Fluid Mech., 245, 619 (1992).

    Article  CAS  Google Scholar 

  13. P. K. Ptasinski, F. T.M. Nieuwstadt, B. H.A. A. Van Den Brule and M. A. Hulsen, Flow, Turbulence and Combustion, 66(2), 159 (2001).

    Article  Google Scholar 

  14. R. H. J. Sellin and M. Ollis, Journal of Rheology, 24, 667 (1980).

    Article  Google Scholar 

  15. M. F. Khalil, S. Z. Kassab, A.A. Elmiligui and F. A. Naoum, J. Irrigation and Drainage Eng., 128, 147 (2002).

    Article  Google Scholar 

  16. Ch. V. Subba Rao, P. King and V. S. R. K. Prasad, Int. J. Fluid Mechanics Res., 35, 374 (2008).

    Article  Google Scholar 

  17. J.M. J. Den Toonder, M. A. Hulsen, G. D. C. Kuiken and F. T. M. Nieuwstadt, J. Fluid Mech., 337, 193 (1997).

    Article  Google Scholar 

  18. H. J. Choi, S. T. Lim, P.-Y. Lai and C. K. Chan, Phys. Rev. Lett., 89, 088302-1 (2002).

    Google Scholar 

  19. D. L. Hunston and J. L. Zakin, Polym. Eng. Sci., 20(7), 517 (1980).

    Article  CAS  Google Scholar 

  20. H. J. Choi, C. A. Kim, J. Sohn and M. S. Jhon, Polymer Degradation and Stability, 69, 341 (2000).

    Article  CAS  Google Scholar 

  21. T. Nakken, M. Tande and B. Nystrom, European Polym. J., 40, 181 (2004).

    Article  CAS  Google Scholar 

  22. C. A. Kim, J. T. Kim, H. J. Choi and M. S. Jhon, Polymer, 41, 7611 (2000).

    Article  CAS  Google Scholar 

  23. Y. Goren and J. F. Norbury, J. Basic Eng., 89, 814 (1967).

    Article  CAS  Google Scholar 

  24. P. R. Kenis, J. Appl. Polym. Sci., 15(3), 607 (1971).

    Article  CAS  Google Scholar 

  25. Y. Wang, B. Yu, J. L. Zakin and H. Shi, Adv. Mechanical Eng., 2011, 1 (2011).

    Article  Google Scholar 

  26. J.G. Savins, Society of Petroleum Engineers Journal, 4, 203 (1964).

    Article  CAS  Google Scholar 

  27. N. S. Berman, Annual Review of Fluid Mechanics, 10, 47 (1978).

    Article  CAS  Google Scholar 

  28. M. Al-Yaari, A. Soleimani, A. Abu-Sharkh, U. Al-Mubaiyedh and A. Al-sarkhi, Int. J. Multiphase Flow, 35, 516 (2009).

    Article  CAS  Google Scholar 

  29. P. I. Gold, P. K. Akbar and B. E. Swaidan, J. Appl. Polym. Sci., 17, 333 (1973).

    Article  CAS  Google Scholar 

  30. S. Eskinazi, Modern developments in the mechanics of continua, Academic Press, New York, USA (1966).

    Google Scholar 

  31. H.C. Hershey and J. L. Zakin, Chem. Eng. Sci., 22(12), 1847 (1967).

    Article  CAS  Google Scholar 

  32. A. White, J. Mechanical Eng. Sci., 8, 452 (1966).

    Article  Google Scholar 

  33. H. C. Hershey, Drag reduction in newtonian polymer solutions, PhD Thesis, University of Missouri-Rolla (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inkollu Sreedhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreedhar, I., Jain, G., Srinivas, P. et al. Polymer induced turbulent drag reduction using pressure and gravity-driven methods. Korean J. Chem. Eng. 31, 568–573 (2014). https://doi.org/10.1007/s11814-013-0273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0273-7

Keywords

Navigation