Skip to main content
Log in

Biofiltration of volatile organic compound using two packing materials: Kinetics and modelling

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of two laboratory scale biofilters, packed with pressmud (BF1) and sugarcane bagasse (BF2), was evaluated for gas phase ethylacetate removal under various operating conditions. Biofilters were inoculated with mixed culture obtained from pharmaceutical wastewater sludge. Experiments were carried out at different flow rates (0.03, 0.06, 0.09 and 0.12 m3 h−1) and inlet ethylacetate concentrations (0.2, 0.4, 0.6 and 1.2 gm−3). Maximum removal efficiency (RE) of 100% and 98% was achieved at an inlet concentration of 0.2 gm−3 and gas flow rate of 0.03 m3 h−1 in BF1 and BF2, respectively. A maximum elimination capacity (EC) of 66.6 gm−3 h−1 and 64.1 gm−3 h−1 was obtained in BF1 and BF2, respectively, at an inlet concentration of 0.8 gm−3 and a gas flow rate of 0.12 m3 h−1. The kinetics of biofiltration of ethylacetate was studied by using Ottengraf and van den Oever model. The kinetic modelling gives an insight into the mechanism of biofiltration. The modified Ottengraf model, which was also tested, demonstrated good agreement between calculated and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wu, X. Quan, Y. Zhao and S. Chen, J. Hazard. Mater., 136, 288 (2006).

    Article  CAS  Google Scholar 

  2. C. Kennes and M. C. Veiga, J. Biotechnol., 113, 305 (2004).

    Article  CAS  Google Scholar 

  3. J.W. Van Groenestijn and P.G.M. Hesselink, Biodegradation, 4, 283 (1993).

    Article  Google Scholar 

  4. J. S. Devinny and D. S. Hodge, J. Air Waste Manage. Assoc., 45, 125 (1995).

    Article  CAS  Google Scholar 

  5. A. J. Daugulis and N.G. Boudreau, Biotechnol. Lett., 25, 1421 (2003).

    Article  CAS  Google Scholar 

  6. E. Ramírez-López, J. Corona-Hernández, L. Dendooven, P. Rangel and F. Thalasso, Bioresour. Technol., 88, 259 (2003).

    Article  Google Scholar 

  7. H. L. Bohn, Chem. Eng. Prog., 88, 34 (1992).

    CAS  Google Scholar 

  8. A. Pandey, C. R. Soccol, P. Nigam and V.T. Soccol, Bioresour. Technol., 74, 69 (2000).

    Article  CAS  Google Scholar 

  9. M. Zilli, D. Daffonchio, R. Di Felice, M. Giordani and A. Converti, Biodegradation, 15, 87 (2004).

    Article  CAS  Google Scholar 

  10. W. C. Chan and R. X. Zheng, J. Chem. Technol. Biotechnol., 80, 574 (2005).

    Article  CAS  Google Scholar 

  11. L. Bibeau, K. Kiared, A. Leroux, R. Brzezinski, G. Viel and M. Heitz, Can. J. Chem. Eng., 75, 921 (1997).

    Article  CAS  Google Scholar 

  12. H. M. Tang and S. J. Hwang, J. Air Waste Manage. Assoc., 47, 1142 (1997).

    CAS  Google Scholar 

  13. C.W. Lin and Y.W. Cheng, J. Chem. Technol. Biot., 82, 51 (2007).

    Article  CAS  Google Scholar 

  14. H. Jorio, R. Brzezinski and M. Heitz, J. Chem. Technol. Biot., 80, 796 (2005).

    Article  CAS  Google Scholar 

  15. J. P. Arcangeli and E. Arvin, Biodegradation, 10, 177 (1999).

    Article  CAS  Google Scholar 

  16. M. E. Acuna, F. Perez, R. Auria and S. Revah, Biotechnol. Bioeng., 63, 175 (1999).

    Article  CAS  Google Scholar 

  17. M. Schirmer, B. J. Butler, J.W. Roy, E. O. Frind and J. F. Barker, J. Contam. Hydrol., 37, 69 (1999).

    Article  CAS  Google Scholar 

  18. P. Juteau, R. Laroque, D, Rho and A. Le Duy, Appl. Microbiol. Biotechnol., 52, 863 (1999).

    Article  CAS  Google Scholar 

  19. L. H. Smith and P. L. McCarty, Biotechnol. Bioeng., 55, 650 (1997).

    Article  CAS  Google Scholar 

  20. H. M. Tang and S. J. Hwang, J. Air Waste Manage. Assoc., 47, 1142 (1997).

    CAS  Google Scholar 

  21. R. Govind, Z. Wang and D. F. Bishop, Air and Waste Management Association, Proceedings of the 90 th Annual Meeting and Exhibition, Toronto, Canada (1997).

    Google Scholar 

  22. S. P. P. Ottengraf and A. H. C. Vander Oever, Biotechnol. Bioeng., 25, 3089 (1983).

    Article  CAS  Google Scholar 

  23. J. S. Devinny and D. S. Hodge, J. Environ. Eng., 121, 21 (1995).

    Article  Google Scholar 

  24. Y. Jin, L. Guo, M. C. Veiga and C. Kennes, Biotechnol. Bioeng., 96, 433 (2007).

    Article  CAS  Google Scholar 

  25. M.C. Delhomenie, L. Bibeau and M. Heitz, Chem. Eng. Sci., 57, 4999 (2002).

    Article  CAS  Google Scholar 

  26. A. Windsperger, Radex Rundsch, 3, 7 (1991).

    Google Scholar 

  27. F. Javier Alvarez-Hornos, V. Carmen Gabaldon, Martínez-Soria, Paula Marzal and Josep-Manuel Penya-roja, Biochem. Eng. J., 43, 169 (2009).

    Article  CAS  Google Scholar 

  28. M. Deshusses and C. T. Johnson, J. Air Waste Marage. Assoc., 49, 973 (1999).

    Article  CAS  Google Scholar 

  29. W. Namkoonga, J. S. Parka and J. S. Vander Gheynst, Environ. Poll, 121, 181 (2004).

    Article  Google Scholar 

  30. K. Chmiel. Transient and steady state characteristics of butanol biodegradation on a pre-selected pine bark bed, Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland (2003).

    Google Scholar 

  31. G. Leson and A. M. Winer, J. Air Waste Marage., 41, 1045 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanathan Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, V., Rajasimman, M. & Rajamohan, N. Biofiltration of volatile organic compound using two packing materials: Kinetics and modelling. Korean J. Chem. Eng. 30, 1918–1928 (2013). https://doi.org/10.1007/s11814-013-0113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0113-9

Key words

Navigation