Skip to main content
Log in

Contribution of the solid phase polymerization to the molecular weight distribution in acrylonitrile precipitation copolymerization

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Molecular weight distribution of copolyacrylonitrile, which was obtained from precipitation copolymerization without and with using dispersants in mixed solution, is studied. The contribution ratio of liquid phase polymerization and solid phase polymerization under different polymerization conditions could be worked out through the formula, which has been deduced in literature. From the calculated results, common points of each reaction system are, i) contribution ratio (r) of solid phase to liquid phase decreases with the increase of water content; thus the solid phase polymerization is gradually strengthened, which is apt to form chain of high molecular weight, ii) the higher temperature leads to higher compatibility between water and DMSO; thus the solid phase polymerization contribution would decrease, while the value of r is considerably larger. The limit molecular weight distribution of the system without dispersants in 100% water is approaching to 2; thus the corresponding r becomes larger, the molecular weight distribution ratio (Q) decreases in the system with dispersants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Liu, S. K. Zhang, J. Wang, S. K. Ryu and R. G. Jin, Carbon Lett., 13, 133 (2012).

    Google Scholar 

  2. W. S. Lyoo and J. P. Kim, Colloid Polym. Sci., 276, 951 (1998).

    Article  CAS  Google Scholar 

  3. V. D. Keshav, Synth. Fibers, 10, 5 (1997).

    Google Scholar 

  4. A. K. Gupta, D. K. Paliwal and P. Bajaj, Polymer Reviews, 31, 1 (1991).

    Article  Google Scholar 

  5. J. S. Tsai and C. H. Lin, J. Appl. Polym. Sci., 42, 3045 (1991).

    Article  CAS  Google Scholar 

  6. J. Zhang, F. J. Bu, Y. Q. Dai, L. W. Xue, Z. X. Xu, S. K. Ryu and R. G. Jin, Carbon Lett., 11, 22 (2010).

    Article  Google Scholar 

  7. R. Devasia, C. P. Reghunadhan Nair and K. N. Ninan, European Polymer J., 38, 2003 (2002).

    Article  CAS  Google Scholar 

  8. S. X. Zhou, Z. X. Weng and Z. M. Huang, J. Appl. Polymer Sci., 8, 1431 (2001).

    Article  Google Scholar 

  9. Y. Z. Wang, C. F. Sun, C. G. Wang and B. Zhu, J. Shandong Univ., 33, 362 (2003).

    Google Scholar 

  10. Toray, J9-412269 Pat. 1997.2.10.

  11. Mitsubishi Rayon, J9-13220 Pat. 1997.1.14.

  12. Q. F. Qin, Y. Q. Dai, K. Yi, L. Zhang, S. K. Ryu and R. G. Jin, Carbon Lett., 11, 176 (2010).

    Article  Google Scholar 

  13. S. S. Moghadam and S. H. Bahrami, Iran Polym. J., 14, 1032 (2005).

    CAS  Google Scholar 

  14. M. A. Ali, E. A. A. Ajbar and K. Alhumaiji, Korean J. Chem. Eng., 27(1), 364 (2010).

    Article  CAS  Google Scholar 

  15. A. K. Kashyap and V. Kalpagam, J. Polym. Sci. Pol. Chem., 17, 225 (1979).

    Article  CAS  Google Scholar 

  16. C. G. Wang and B. Zhu, Polyacrylonitrile Based Carbon Fibers, Science Press, Beijing (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri Guang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.K., Liu, W.W., Zhang, H.B. et al. Contribution of the solid phase polymerization to the molecular weight distribution in acrylonitrile precipitation copolymerization. Korean J. Chem. Eng. 30, 746–750 (2013). https://doi.org/10.1007/s11814-012-0183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0183-0

Key words

Navigation