Skip to main content
Log in

Solubility and solution rheology of acrylamide-sulfobetaine copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The copolymer of acrylamide and 3-[N-(2-methacryloxylethyl)-N,N-dimethylammonio]-propane sulfonate (PAM-MDMPS) was prepared via free radical copolymerization. Solubility of the copolymers was studied by turbidimetric titration method under different conditions. It was found for the first time that the critical salt concentration to dissolve the copolymer showed a plateau over one order of magnitude up to the critical overlap concentration. Rheological behavior and chain conformation of the copolymers in 1 M NaCl solution were also studied. The concentration regions according to scaling theory were found the same as neutral polymers in good solvent. The specific viscosities could be normalized by the overlap parameter. According to the Huggins relation, the copolymers adopted a more compact conformation in 1 M NaCl with increasing MDMPS content due to the hydrophobic association of the betaine unit in the macromolecular backbone, which was stabilized by the strongly hydrated dipolar pendant chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric betaines: synthesis, characterization, and application. In: Supramolecular polymers polymeric betains oligomers, p 157–224

  2. Xuan F, Liu J (2009) Preparation, characterization and application of zwitterionic polymers and membranes: current developments and perspective. Polym Int 58(12):1350–1361

    Article  CAS  Google Scholar 

  3. Singh PK, Singh VK, Singh M (2007) Zwitterionic polyelectrolytes: a review. E-Polymers

  4. Kudaibergenov SE, Nuraje N, Khutoryanskiy VV (2012) Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter 8(36):9302–9321

    Article  CAS  Google Scholar 

  5. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102(11):4177–4189

    Article  CAS  Google Scholar 

  6. Hart R, Timmerman D (1958) New polyampholytes: the polysulfobetaines. J Polym Sci 28(118):638–640

    Article  CAS  Google Scholar 

  7. Salamone JC, Volksen W, Olson AP, Israel SC (1978) Aqueous-solution properties of a poly(vinyl imidazolium sulfobetaine). Polymer 19(10):1157–1162

    Article  CAS  Google Scholar 

  8. Soto VMM, Galin JC (1984) Poly(sulphopropylbetaines). 2. Dilute-solution properties. Polymer 25(2):254–262

    Article  CAS  Google Scholar 

  9. Schulz DN et al (1986) Phase-behavior and solution properties of sulfobetaine polymers. Polymer 27(11):1734–1742

    Article  CAS  Google Scholar 

  10. Soto VMM et al (1984) Solid-state properties of polysulphopropylbetaines. Plast Eng 40(3):56–56

    Google Scholar 

  11. Galin M et al (1987) Poly(sulfopropylbetaines). 3. Bulk properties. Polymer 28(11):1937–1944

    Article  CAS  Google Scholar 

  12. Velasquez DL, Galin JC (1986) Microenvironment polarity of macromolecules in solution and in the condensed state. 1. Solvatochromic approach in dilute-solution. Macromolecules 19(4):1096–1105

    Article  Google Scholar 

  13. Zheng YL, Knoesel R, Galin JC (1987) Poly sulfopropylbetaines). 4. Binding-properties towards reporter anionic probes and local polarity close to the zwitterionic chain in aqueous-solution. Polymer 28(13):2297–2303

    Article  CAS  Google Scholar 

  14. Mathis A, Zheng YL, Galin JC (1986) Sulfonatopropylbetaine random copolymers—zwitterionic analogs of ionomers. Makromol Chem-Rapid Commun 7(6):333–337

    Article  CAS  Google Scholar 

  15. Zheng YL, Galin M, Galin JC (1988) Random ethylacrylate sulfonatopropylbetaine copolymers. 1. Synthesis and characterization. Polymer 29(4):724–730

    Article  CAS  Google Scholar 

  16. Bazuin CG et al (1989) Random ethyl acrylate sulfonatopropylbetaine copolymers. 2. Dynamic mechanical-properties. Polymer 30(4):654–661

    Article  CAS  Google Scholar 

  17. Mathis A, Zheng YL, Galin JC (1991) Random ethylacrylate zwitterionic copolymers. 3. Microphase separation as a function of the zwitterion structure. Polymer 32(17):3080–3085

    Article  CAS  Google Scholar 

  18. Ehrmann M, Galin JC (1992) Statistical normal-butyl acrylate sulphonato-propylbetaine copolymers. 1. Synthesis and molecular characterization. Polymer 33(4):859–865

    Article  CAS  Google Scholar 

  19. Ehrmann M et al (1992) Statistical normal-butyl acrylate (sulfopropyl)ammonium betaine copolymers. 2. Structural studies. Macromolecules 25(8):2253–2261

    Article  CAS  Google Scholar 

  20. Ehrmann M, Galin JC, Meurer B (1993) Statistical n-butyl acrylate sulfopropyl betaine copolymers. 3. Domain size determination by solid-state nmr-spectroscopy. Macromolecules 26(5):988–993

    Article  CAS  Google Scholar 

  21. Ehrmann M et al (1993) Statistical n-butyl acrylate (sulfopropyl)ammonium betaine copolymers. 4. Dynamic-mechanical properties. Macromolecules 26(18):4910–4918

    Article  CAS  Google Scholar 

  22. Galin M, Mathis A, Galin JC (1993) Statistical n-butyl acrylate (sulfopropyl)ammonium betaine copolymers. 5. Plasticization studies. Macromolecules 26(18):4919–4927

    Article  CAS  Google Scholar 

  23. Donovan MS et al (2002) Controlled/“living” polymerization of sulfobetaine monomers directly in aqueous media via RAFT. Macromolecules 35(23):8663–8666

    Article  CAS  Google Scholar 

  24. Ezell RG, Lowe AB, McCormick CL (2006) Synthetic polyzwitterions: water-soluble copolymers and terpolymers. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications, p 47–63

  25. Lowe AB, McCormick CL (2006) Synthesis, aqueous solution properties, and biomedical application of polymeric betaines. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications, p 65–78

  26. Armentrout RS, McCormick CL (2000) Water soluble polymers. 76. Electrolyte responsive cyclocopolymers with sulfobetaine units exhibiting polyelectrolyte or polyampholyte behavior in aqueous media. Macromolecules 33(2):419–424

    Article  CAS  Google Scholar 

  27. Donovan MS et al (2003) Sulfobetaine-containing diblock and triblock copolymers via reversible addition-fragmentation chain transfer polymerization in aqueous media. J Polym Sci A Polym Chem 41(9):1262–1281

    Article  CAS  Google Scholar 

  28. Lee WF, Chen YM (2001) Poly(sulfobetaine)s and corresponding cationic polymers. VIII. Synthesis and aqueous solution properties of a cationic poly(methyl iodide quaternil styrene-N, N-dimethylaminopropyl maleamidic acid) copolymer. J Appl Polym Sci 80(10):1619–1626

    Article  CAS  Google Scholar 

  29. Lee WF, Huang GY (1996) Poly(sulfobetaine)s and corresponding cationic polymers. 5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide maleic anhydride copolymer. Polymer 37(19):4389–4395

    Article  CAS  Google Scholar 

  30. Lee WF, Lee CH (1997) Poly(sulfobetaine)s and corresponding cationic polymers. 3. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from styrene-maleic anhydride. Polymer 38(4):971–979

    Article  CAS  Google Scholar 

  31. Lee WF, Chen YM (2003) Poly(sulfobetaine)s and corresponding cationic polymers. IX. Synthesis and aqueous solution properties of zwitterionic poly(sulfobetaine) derived from a styrene-N, N-dimethylaminopropyl maleamidic acid copolymer. J Appl Polym Sci 89(7):1884–1889

    Article  CAS  Google Scholar 

  32. Lee WF, Chen YM (2004) Poly(sulfobetaine)s and corresponding cationic polymers. X. Viscous properties of zwitterionic poly(sulfobetaine) derived from styrene-(N, N-dimethylaminopropyI maleamidic acid) copolymer in aqueous salt solutions. J Appl Polym Sci 91(2):726–734

    Article  CAS  Google Scholar 

  33. Lee WF, Hwong GY (1996) Polysulfobetaines and corresponding cationic polymers. 4. Synthesis and aqueous solution properties of cationic poly(MIQSDMAPM). J Appl Polym Sci 59(4):599–608

    Article  CAS  Google Scholar 

  34. Lee WF, Huang GY (1996) Polysulfobetaines and corresponding cationic polymers. 6. Synthesis and aqueous solution properties of cationic poly(methyl iodide quaternized acrylamide-N, N-dimethylaminopropylmaleimide copolymer) poly(MIQADMAPM). J Appl Polym Sci 60(2):187–199

    Article  CAS  Google Scholar 

  35. Lee WF, Tsai CC (1994) Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers. 1. Synthesis and characterization of sulfobetaines and the corresponding cationic monomers by nuclear-magnetic-resonance spectra. Polymer 35(10):2210–2217

    Article  CAS  Google Scholar 

  36. Lee WF, Tsai CC (1995) Synthesis and solubility of the poly(sulfobetaine)s and the corresponding cationic polymers. 2. Aqueous-solution properties of poly N, N′-dimethyl(acrylamido propyl) ammonium propane sulfonate. Polymer 36(2):357–364

    Article  CAS  Google Scholar 

  37. Shih Y-J et al (2012) “Schizophrenic” hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules 13(9):2849–2858

    Article  CAS  Google Scholar 

  38. Che Y-J et al (2011) Synthesis and properties of hydrophobically modified acrylamide-based polysulfobetaines. Polym Bull 66(1):17–35

    Article  CAS  Google Scholar 

  39. Flores JD et al (2009) Reversible “self-locked” micelles from a zwitterion-containing triblock copolymer. Macromolecules 42(14):4941–4945

    Article  CAS  Google Scholar 

  40. Sun J-T et al (2012) Biocompatible zwitterionic sulfobetaine copolymer-coated mesoporous silica nanoparticles for temperature-responsive drug release. Macromol Rapid Commun 33(9):811–818

    Article  CAS  Google Scholar 

  41. Kamenska E et al (2009) Synthesis and characterization of zwitterionic co-polymers as matrices for sustained metoprolol tartrate delivery. J Biomater Sci Polym Ed 20(2):181–197

    Article  CAS  Google Scholar 

  42. Kuo W-H et al (2011) Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules 12(12):4348–4356

    Article  CAS  Google Scholar 

  43. Lalani R, Liu L (2012) Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 13(6):1853–1863

    Article  CAS  Google Scholar 

  44. Liu P-S et al (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10(10):2809–2816

    Article  CAS  Google Scholar 

  45. Robertson CG et al (2011) Flocculation, reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber. Rubber Chem Technol 84(4):507–519

    Article  CAS  Google Scholar 

  46. Liu P-S et al (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350(1–2):387–394

    Article  CAS  Google Scholar 

  47. Wang L et al (2009) Highly efficient antifouling ultrafiltration membranes incorporating zwitterionic poly(3-(methacryloylamino)propyl -dimethyl(3-sulfopropyl) ammonium hydroxide). J Membr Sci 340(1–2):164–170

    Article  CAS  Google Scholar 

  48. Zhao J et al (2011) Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. J Membr Sci 369(1–2):5–12

    Article  CAS  Google Scholar 

  49. Zhao Y-H, Wee K-H, Bai R (2010) Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J Membr Sci 362(1–2):326–333

    Article  CAS  Google Scholar 

  50. Kim JC et al (2012) Biocompatible characteristics of sulfobetaine-containing brush polymers. Macromol Res 20(7):746–753

    Article  CAS  Google Scholar 

  51. Chang Y et al (2010) Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(n-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 11(4):1101–1110

    Article  Google Scholar 

  52. Zhang Z et al (2009) Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed 20(13):1845–1859

    Article  CAS  Google Scholar 

  53. Kasak P et al (2011) Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: synthesis and characterization. Polymer 52(14):3011–3020

    Article  CAS  Google Scholar 

  54. Takahashi A et al (2011) Thermosensitive properties of semi-IPN gel composed of amphiphilic gel and zwitterionic thermosensitive polymer in buffer solutions containing high concentration salt. Polymer 52(17):3791–3799

    Article  CAS  Google Scholar 

  55. McCormick CL, Elliott DL (1986) Water-soluble copolymers. 14. Potentiometric and turbidimetric studies of water-soluble copolymers of acrylamide—comparison of carboxylated and sulfonated copolymers. Macromolecules 19(3):542–547

    Article  CAS  Google Scholar 

  56. Rego JM, Huglin MB (1991) Influence of composition on properties of hydrogels of 2-hydroxyethyl methacrylate with a sulfobetaine comonomer. Polym J 23(12):1425–1434

    Article  CAS  Google Scholar 

  57. Che Y-J et al (2010) Aggregation behavior of copolymer containing sulfobetaine structure in aqueous solution. J Macromol Sci B Phys 49(4):695–710

    Article  CAS  Google Scholar 

  58. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  59. Huglin MB (1972) Light scattering from polymer solutions. Academic, London

    Google Scholar 

  60. Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44(12):4550–4564

    Article  CAS  Google Scholar 

  61. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62(21):7512–7515

    Article  CAS  Google Scholar 

  62. Salamone JC et al (1977) Preparation of inner salt polymers from vinylimidazolium sulfobetaines. Polymer 18(10):1058–1062

    Article  CAS  Google Scholar 

  63. Mary P et al (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 111(27):7767–7777

    Article  CAS  Google Scholar 

  64. Huglin MB, Radwan MA (1991) Properties of poly N-2-(methyacryloyloxy)ethyl-N, N-dimethyl-N-3-sulfopropylammonium betaine in dilute-solution. Makromol Chem Macromol Chem Phys 192(10):2433–2445

    Article  CAS  Google Scholar 

  65. Dobrynin AV, Rubinstein M (1995) Flory theory of a polyampholyte chain. J Phys II 5(5):677–695

    CAS  Google Scholar 

  66. Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49(5):425–442

    Article  CAS  Google Scholar 

  67. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  68. Che Y-J et al (2010) A study of aggregation behavior of a sulfobetaine copolymer in dilute solution. J Polym Res 17(4):557–566

    Article  CAS  Google Scholar 

  69. Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716–2718

    Article  CAS  Google Scholar 

  70. Salamone JC et al (1988) Synthesis and solution properties of ampholytic acrylamide ionomers. J Macromol Sci Chem A25(5–7):811–837

    Article  Google Scholar 

  71. Matsuoka S, Cowman MK (2002) Equation of state for polymer solution. Polymer 43(12):3447–3453

    Article  CAS  Google Scholar 

  72. Feng XS et al (2005) Toward an easy access to dendrimer-like poly(ethylene oxide)s. J Am Chem Soc 127(31):10956–10966

    Article  CAS  Google Scholar 

  73. Trollsas M et al (2000) Constitutional isomers of dendrimer-like star polymers: design, synthesis, and conformational and structural properties. Macromolecules 33(17):6423–6438

    Article  Google Scholar 

  74. Lee WF, Chen CF, Yen SH (2001) Synthesis and characterization of novel sulfobetaines derived from 2,4-tolylene diisocyanate. J Appl Polym Sci 82(14):3447–3459

    Article  CAS  Google Scholar 

  75. Gui ZL et al (2009) Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. Eur Polym J 45(5):1403–1411

    Article  CAS  Google Scholar 

  76. Azzaroni O, Brown AA, Huck WTS (2006) UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew Chem Int Ed 45(11):1770–1774

    Article  CAS  Google Scholar 

  77. Okada R, Tanzawa H (1965) Apparent activation energy for viscous flow of polymer solutions. J Polym Sci Gen Pap 3(12PA):4294

    Article  CAS  Google Scholar 

  78. Yao KJ, Liu FH (1995) Synthesis and rheological behavior in aqueous-solutions of poly(acrylamide-co-maleic acid). J Appl Polym Sci 56(1):9–15

    Article  CAS  Google Scholar 

  79. Gupta K, Yaseen M (1997) Viscosity-temperature relationship of dilute solution of poly(vinyl chloride) in cyclohexanone and in its blends with xylene. J Appl Polym Sci 65(13):2749–2760

    Article  CAS  Google Scholar 

  80. de Vasconcelos CL et al (2000) Viscosity-temperature-concentration relationship for starch-DMSO-water solutions. Carbohydr Polym 41(2):181–184

    Article  Google Scholar 

  81. Singh M, Kumar S (2004) Activation energy, free energy, enthalpy, and entropy changes associated with viscometric changes of extremely to moderately dilute aqueous solutions of polyvinylpyrrolidone at 288.15-313.15 K. J Appl Polym Sci 93(1):47–55

    Article  CAS  Google Scholar 

  82. Ying L, Hou C, Qun W (2007) Rheological behavior of acrylonitrile/ammonium acrylate copolymer solutions. J Appl Polym Sci 103(4):2320–2324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihu Song or Qiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Song, Y. & Zheng, Q. Solubility and solution rheology of acrylamide-sulfobetaine copolymers. Colloid Polym Sci 292, 2185–2195 (2014). https://doi.org/10.1007/s00396-014-3246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3246-4

Keywords

Navigation