Skip to main content
Log in

Deterioration of denitrification by oxygen and cost evaluation of electron donor in an uncovered pre-denitrification process

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Specific nitrate uptake rates (SNURs) under two test conditions were measured to evaluate effects of oxygen inhibition on denitrification. A test condition was that activated sludge was completely prevented from contacting of oxygen (SNUR closed ), the other was that activated sludge was contacted to free air (SNUR open ). Municipal wastewater and acetate were used as electron donors. SNUR closed was 2.42 mg NO3-N/g VSS-hr and SNUR open was 1.09 mg NO3-N/g VSS-hr when municipal wastewater was used as electron donor. Meanwhile, when acetate was used as electron donor, SNUR closed was 24.65 mg NO3-N/g VSS-hr and SNUR open was 18.00 mg NO3-N/g VSS-hr. The operating costs for electron donors were calculated based on the unit price of acetate to remove nitrate. When municipal wastewater was used as electron donor the ratio of cost open to cost closed was 0.45. Cost evaluation showed the adverse impacts on denitrification and explained why an anoxic reactor should be sequestered from oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hagman, J. L. Nielsen, P. H. Nielsen and J. la. C., Jansen, Water Res., 42, 1539 (2008).

    Article  CAS  Google Scholar 

  2. M. T. Madigan, J.M. Martinko, P.V. Dunlap and D. P. Clark, Brock biology of microorganisms, 12th Ed., Pearson, New York (2006).

    Google Scholar 

  3. C.M. Thomas, E.M. H. Wellington, R. Diaz-Orejas and M. Espinosa, Microbiol., 140, 1799 (1994).

    Article  Google Scholar 

  4. S. H. Chuang, C. F. Ouyang and Y. B. Wang, Water Res., 30, 2961 (1996).

    Article  CAS  Google Scholar 

  5. R. J. Zeng, Z. Yuan and J. Keller, Biotechnol. Bioeng., 81, 397 (2003).

    Article  CAS  Google Scholar 

  6. A. De Lucas, L. Rodríguez, J. Villaseòor and F. J. Fernández, Water Res., 39, 3715 (2005).

    Article  Google Scholar 

  7. J. J. Her and J. S. Huang, Bioresour. Technol., 54, 45 (1995).

    Article  CAS  Google Scholar 

  8. J. Oh and J. Silverstein, Water Res., 33, 1925 (1999).

    Article  CAS  Google Scholar 

  9. N.Y. F. Tam, Y. S. Wong and W.G. Leung, Water Res., 26, 1229 (1992).

    Article  CAS  Google Scholar 

  10. I. Somiya, H. Tsuno and M. Matsumoto, Water Res., 22, 49 (1998).

    Article  Google Scholar 

  11. G.A. Ekama and G. v. R. Marais, in theory, design and operation of nutrient removal activated sludge processes. A collaborative information document prepared for the Water Research Commission by the University Cape Town, City Council of Johannesburg and the National Institute for Water Research of the CSIR, PRETORIA, South Africa (1984).

  12. M. Henze, C. P. L. Grady, W. Gujer, G. v. R. Mararis and T. Matsuo, Activated sludge model No. 1, Scientifical and Technical Report No. 1, IWAPRC, London (1987).

    Google Scholar 

  13. K. Kujawa and B. Klapwijk, Water Res., 33, 2291 (1999).

    Article  CAS  Google Scholar 

  14. S. J. You, Y. P. Tsai and R.Y. Huang, Environ. Eng. Sci., 26, 1207 (2009).

    Article  Google Scholar 

  15. A. Jobbágy, J. Simon and B. Plósz, Water Res., 34, 2606 (2000).

    Article  Google Scholar 

  16. E. V. Münch, P. Lant and J. Keller, Water Res., 30, 277 (1996).

    Article  Google Scholar 

  17. B.G. Plósz, A. Jobbágy and C. P. L. Grady Jr., Water Res., 37, 853 (2003).

    Article  Google Scholar 

  18. L. A. Robertson and J. G. Kuenen, Arch. Microbiol., 139, 351 (1984a).

    Article  CAS  Google Scholar 

  19. A. J. B. Zehnder, Biology of anaerobic microorganisms, 1st Ed., Wiley, New York (1988).

    Google Scholar 

  20. E. Choi, D. Kim, Y. Eum, Z. Yun and K. Min, Water Environ. Res., 77, 381 (2005).

    Article  CAS  Google Scholar 

  21. US EPA, Manual: Nitrogen control, EPA/625/R-93/010, Washington, DC (1993).

  22. D. V. MacDonald, J. Water Pol. Cont. Fed., 62, 796 (1990).

    CAS  Google Scholar 

  23. G. H. Kristensen, P. E. Jørgensen and M. Henze, Water Sci. Technol., 25, 43 (1992).

    CAS  Google Scholar 

  24. Metcalf and Eddy, Wastewater engineering: treatment and reuse, 4th Ed., McGraw Hill, New York (2003).

    Google Scholar 

  25. APHA, Standard Methods for the Examination of Water and Wastewater, 20th Ed., APHA, Washington DC (1998).

    Google Scholar 

  26. D. Orhon, S. Sözen and N. Artan, Water Sci. Technol., 34, 67 (1996).

    CAS  Google Scholar 

  27. M. Spérandio, V. Urbain, J. M. Audic and E. Paul, Water Sci. Technol., 39, 139 (1999).

    Google Scholar 

  28. Y. Mokhayeri, R. Riffat, S. Murthy, W. Bailey, I. Takacs and C. Bott, Water Sci. Technol., 60, 2485 (2009).

    Article  CAS  Google Scholar 

  29. L. C. Bell, D. J. Richardson and S. J. Ferguson, FEBS Lett., 265, 85 (1990).

    Article  CAS  Google Scholar 

  30. L. A. Robertson and J.G. Kuenen, Antonie Van Leeuwenhoek, 50, 525 (1984b).

    Article  CAS  Google Scholar 

  31. Q. Wu, E. Knowles and D. F. Niven, Can. J. Microbiol., 40, 916 (1994).

    Article  CAS  Google Scholar 

  32. B. Li and S. Irvin, Biochem. Eng. J., 34, 248 (2007).

    Article  CAS  Google Scholar 

  33. S. Saby, M. Djafer and G. H. Chen, Water Res., 37, 11 (2003).

    Article  CAS  Google Scholar 

  34. V. Mateju, S. Cizinska, J. Krejci and T. Janoch, Enzyme Microb. Technol., 14, 170 (1992).

    Article  CAS  Google Scholar 

  35. D.Y. Bang, Y. Watanbe and T. Noike, Water Sci. Technol., 32, 235 (1995).

    CAS  Google Scholar 

  36. F. Cecen and E. Gionenc, Water Sci. Technol., 26, 2225 (1992).

    CAS  Google Scholar 

  37. Y. C. Chiu and M. S. Chung, Int. Biodeterioration Biodeg., 51, 43 (2003).

    Article  CAS  Google Scholar 

  38. C. Glass and J. Silverstein, Water Res., 32, 831 (1998).

    Article  CAS  Google Scholar 

  39. M. Beccari, R. Passion, R. Ramadori and V. Tandoi, J. Water Pollt. Control Fed., 55, 58 (1983).

    CAS  Google Scholar 

  40. C. Glass, J. Silverstein and J. Oh, Water Env. Res., 69, 1086 (1997).

    Article  CAS  Google Scholar 

  41. J. Ma, Q. Yang, S. Wang, L. Wang, A. Takigawa and Y. Peng, J. Hazard. Mater., 175, 518 (2010).

    Article  CAS  Google Scholar 

  42. C. Francis and J. Mankin, Water Res., 11, 289 (1977).

    Article  CAS  Google Scholar 

  43. G. Koch, M. Kühni, W. Gujer and H. Siegriest, Water Res., 34, 3580 (2000).

    Article  CAS  Google Scholar 

  44. S. S. Alves, C. I. Maia and J. M. T. Vasconcelos, Chem. Eng. Proc., 43, 823 (2004).

    Article  CAS  Google Scholar 

  45. R. Lemoine and B. I. Morsi, Int. J. Chem. React. Eng., 3, 1 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Joo Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S.J., Kim, TH., Kim, TH. et al. Deterioration of denitrification by oxygen and cost evaluation of electron donor in an uncovered pre-denitrification process. Korean J. Chem. Eng. 29, 1196–1202 (2012). https://doi.org/10.1007/s11814-012-0004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0004-5

Key words

Navigation