Skip to main content
Log in

Aerobic denitrification — old wine in new bottles?

  • Physiology And Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The evidence concerning aerobic denitrification over the past 100 years has been reviewed and the conclusion reached that the denitrification systems of some bacteria are inhibited by oxygen, other species are capable of aerobic denitrification, or co-respiration of nitrate and oxygen. Possible mechanisms and ecological implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alefounder, P. R. andFerguson, S. K. 1980. The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen inParacoccus denitrificans. — Biochem. J.192: 231–240.

    CAS  PubMed  Google Scholar 

  • Alefounder, P. R., Greenfield, A. J., McCarthy, J. E. G. andFerguson, S. J. 1983. Selection and organisation of denitrifying electron-transfer pathways inParacoccus denitrificans. — Biochim. Biophys. Acta724: 20–39.

    CAS  Google Scholar 

  • Alefounder, P. R., Greenfield, A. J., McCarthy, J. E. G. andFerguson, S. J. 1984. The basis for preferential electron flow to oxygen rather than nitrogen oxides in the denitrifying bacteriumParacoccus denitrificans.In R. K. Poole and C. S. Dow (eds), Microbial Gas Metabolism — Mechanistic, Metabolic and Biotechnological Aspects. — Academic Press, London (in press).

    Google Scholar 

  • Alefounder, P. R., McCarthy, J. E. G. andFerguson, S. J. 1981. The basis of the control of nitrate reduction by oxygen inParacoccus denitrificans. — FEMS Microbiol. Lett.12: 321–326.

    CAS  Google Scholar 

  • Bazylinski, D. A. andBlakemore, R. P. 1983a. Denitrification and assimilatory nitrate reduction inAquaspirillum magnetotacticum. — Appl. Environ. Microbiol.46: 1118–1124.

    CAS  PubMed  Google Scholar 

  • Bazylinski, D. A. andBlakemore, R. P. 1983b. Nitrogen fixation (acetylene reduction) inAquaspirillum magnetotacticum. — Curr. Microbiol.9: 305–308.

    Article  CAS  Google Scholar 

  • Boogerd, F. C. 1984. Energetic aspects of denitrification inParacoccus denitrificans. — Ph.D. Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Bréal, E. 1892. De la présence, dans la paille, d’un ferment aérobie, réducteur des nitrates. — C. R. Acad. Sci.114: 681–684.

    Google Scholar 

  • Bryan, B. A. 1981. Physiology and biochemistry of denitrification. p. 67–84.In C. C. Delwiche (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide. — John Wiley & Sons, New York.

    Google Scholar 

  • Castignetti, D. andHollocher, T. C. 1984. Heterotrophic nitrification among denitrifiers. — Appl. Environ. Microbiol.47: 620–623.

    CAS  PubMed  Google Scholar 

  • Cole, J. A. andBrown, C. M. 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. — FEMS Microbiol. Lett.7: 65–72.

    CAS  Google Scholar 

  • Collins, F. M. 1955. Bacterial denitrification in shaken cultures. — Enzymologia17: 291–296.

    Google Scholar 

  • Cranston, J. A. andLloyd, B. 1930. Experiments on bacterial denitrification. — J. R. Tech. Coll. Glasgow 301–315.

  • De Vries, W., Niekus, H. G. D., Van Berchum, H. andStouthamer, A. H. 1982. Electron transport-linked proton translocation at nitrite reduction inCampylobacter sputorum subspeciesbubulus. — Arch. Microbiol.131: 132–139.

    Article  PubMed  Google Scholar 

  • Dunn, G. M., Herbert, R. A. andBrown, C. M. 1979. Influence of oxygen tension on nitrate reduction by aKlebsiella sp. growing in chemostat culture. — J. Gen. Microbiol.112: 379–383.

    CAS  PubMed  Google Scholar 

  • Elema, B. 1932. De bepaling van de oxydatie-reductiepotentiaal in bacteriëncultures en hare beteekenis voor de stofwisseling. — Ph.D. Thesis, Delft Technological University.

  • Gayon, U. andDupetit, G. 1886. Recherches sur la réduction des nitrates par les infinement petits. — Mem. Soc. Sci. Phys. Nat. Bordeaux Ser. 3:2: 201–307.

    Google Scholar 

  • Gottschal, J. C. andKuenen, J. G. 1980. Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in continuous culture. — FEMS Microbiol. Lett.7: 241–247.

    CAS  Google Scholar 

  • Harrison Jr, A. P. 1983. Genomic and physiological comparisons between heterotrophic thiobacilli andAcidiphilium cryptum, Thiobacillus versutus sp. nov., andThiobacillus acidophilus nom. rev. — Int. J. Syst. Bacteriol.33: 211–217.

    Google Scholar 

  • Hochstein, L. I., Betlach, M. andKritikos, G. 1984. The effect of oxygen on denitrification during steady-state growth ofParacoccus halodenitrificans. — Arch. Microbiol.137: 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Hollocher, T. C. 1982. The pathway of nitrogen and reductive enzymes of denitrification. — Antonie van Leeuwenhoek48: 531–544.

    CAS  PubMed  Google Scholar 

  • Jannasch, H. W., 1960. Denitrification as influenced by photosynthetic oxygen production. — J. Gen. Microbiol.23: 55–63.

    CAS  PubMed  Google Scholar 

  • John, P. 1977. Aerobic and anaerobic bacterial respiration monitored by electrodes. — J. Gen. Microbiol.98: 231–238.

    CAS  PubMed  Google Scholar 

  • Justin, P. andKelly, D. P. 1978. Metabolic changes inThiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture. — J. Gen. Microbiol.107: 131–137.

    CAS  Google Scholar 

  • Kefauver, M. andAllison, F. E. 1957. Nitrite reduction byBacterium denitrificans in relation to oxidation-reduction potential and oxygen tension. — J. Bacteriol.73: 8–14.

    CAS  PubMed  Google Scholar 

  • Kluyver, A. J. 1953. Some aspects of nitrate reduction. — Proc. 6th Int. Congr. Microbiol., Symp. Microbial Metabolism, Roma, p. 71–91.

  • Knowles, R. 1982. Denitrification. — Microbiol. Rev.46: 43–70.

    CAS  PubMed  Google Scholar 

  • Koike, I. andHattori, A. 1975. Growth yield of a denitrifying bacterium,Pseudomonas denitrificans, under aerobic and denitrifying conditions. — J. Gen. Microbiol.88: 1–10.

    CAS  PubMed  Google Scholar 

  • Korochinka, O. I. 1936. Oxidation-reduction reactions in denitrifications. — Microbiology (U.S.S.R.)5: 645–655.

    Google Scholar 

  • Krul, J. M. 1976. Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grownAlcaligenes sp. and by activitated sludge. —. J. Appl. Bacteriol.40: 245–260.

    CAS  PubMed  Google Scholar 

  • Krul, J. M. andVeeningen, R. 1977. The synthesis of the dissimilatory nitrate reductase under aerobic conditions in a number of denitrifying bacteria, isolated from activated sludge and drinking water. — Water Res.11: 39–43.

    CAS  Google Scholar 

  • Kučera, I., Boublikova, P. andDadák, V. 1984. Function of terminal acceptors in the biosynthesis of denitrification pathway components inParacoccus denitrificans. — Folia Microbiol. (Prague)29: 108–114.

    Google Scholar 

  • Kučera, I. andDadák, V. 1983. The effect of uncoupler on the distribution of the electron flow between the terminal acceptors oxygen and nitrite in the cells ofParacoccus denitrificans. — Biochem. Biophys. Res. Commun.117: 252–258.

    PubMed  Google Scholar 

  • Kuenen, J. G. andBeudeker, R. F. 1982. Microbiology of thiobacilli and other sulphur oxidizing autotrophs, mixotrophs and heterotrophs. — Philos. Trans. R. Soc. London Ser. B:298: 473–497.

    CAS  Google Scholar 

  • Kuenen, J. G. andGottschal, G. C. 1982. Competition among chemolithotrophs and methylotrophs and their interactions with heterotrophic bacteria. p. 153–188.In A. T. Bull and J. H. Slater (eds), Microbial Interactions and Communities, Vol 1. — Academic Press, London.

    Google Scholar 

  • Kuenen, J. G. andRobertson, L. A. 1984a. Competition among chemolithotrophic bacteria under aerobic and anaerobic conditions. p. 306–313.In M. J. Klug and C. A. Reddy (eds), Current Perspectives in Microbial Ecology. — American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Kuenen, J. G. andRobertson, L. A. 1984b. Interactions between obligately and facultatively chemolithotrophic sulphur bacteria. p. 139–158.In A. C. R. Dean, D. C. Ellwood and C. G. T. Evans (eds), Continuous Culture, Vol. 8, Biotechnology, Medicine and the Environment. — Ellis Horwood Ltd, Chichester.

    Google Scholar 

  • Leegwater, M. P. M. 1983. Microbial reactivity: its relevance to growth in natural and artificial environments. — Ph.D. Thesis, University of Amsterdam.

  • Liu, M.-C. andPeck Jr, H. D. 1981. The isolation of a hexaheme cytochrome fromDesulfovibrio desulfuricans and its identification as a new type of nitrite reductase. — J. Biol. Chem.256: 13159–13164.

    CAS  PubMed  Google Scholar 

  • Lloyd, B. 1931. A marine denitrifying organism. — J. Bacteriol.21: 89–96.

    CAS  PubMed  Google Scholar 

  • Marshall, R. O., Dishburger, H. J., MacVicar, R. andHallmark, G. D. 1953. Studies on the effect of aeration on nitrate reduction byPseudomonas species using N15. — J. Bacteriol.66: 254–258.

    CAS  PubMed  Google Scholar 

  • Meiberg, J. B. M., Bruinenberg, P. M. andHarder, W. 1980. Effect of dissolved oxygen tension on the metabolism of methylated amines inHyphomicrobium X in the absence and presence of nitrate: evidence for “aerobic” denitrification. — J. Gen. Microbiol.120: 453–463.

    CAS  Google Scholar 

  • Meiklejohn, J. 1940. Aerobic denitrification. — Ann. Appl. Biol.27: 558–573.

    CAS  Google Scholar 

  • Nakajima, M., Hayamizu, T. andNishimura, H. 1984. Effect of oxygen concentration on the rates of denitrification and denitritification in the sediments of an eutrophic lake. — Water Res.18: 335–338.

    CAS  Google Scholar 

  • Ottow, J. C. G. andFabig, W. 1983. Influence of oxygen aeration on denitrification and redox level in different bacterial batch cultures. — Proc. 6th Int. Symp. Environmental Biochemistry, New Mexico, p. 61.

  • Payne, W. J. 1981. Denitrification. — John Wiley & Sons, New York.

    Google Scholar 

  • Rittenberg, S. C. 1969. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. — Adv. Microb. Physiol.3: 159–196.

    CAS  Google Scholar 

  • Robertson, L. A. andKuenen, J. G. 1983a. Anaerobic and aerobic denitrification by sulphide oxidizing bacteria from waste water. — Proc. Eur. Symp. Anaerobic Waste Water Treatment, Noordwijkerhout, The Netherlands, p. 3–12.

  • Robertson, L. A. andKuenen, J. G. 1983b.Thiosphaera pantotropha gen. nov., sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. — J. Gen. Microbiol.129: 2847–2855.

    CAS  Google Scholar 

  • Robertson, L. A. andKuenen, J. G. 1984. Aerobic denitrification: a controversy revived. — Arch. Microbiol.139: 351–354.

    Article  CAS  Google Scholar 

  • Schulp, J. A. andStouthamer, A. H. 1970. The influence of oxygen, glucose and nitrate upon the formation of nitrate reductase and the respiratory system inBacillus licheniformis. — J. Gen. Microbiol.64: 195–203.

    CAS  PubMed  Google Scholar 

  • Skerman, V. B. D., Lack, J. andMillis, N. 1951. Influence of oxygen concentration on the reduction of nitrate by aPseudomonas sp. in the growing culture. — Aust. J. Sci. Res. Ser. B:4: 511–525.

    CAS  Google Scholar 

  • Steenkamp, D. J. andPeck Jr, H. D. 1981. Proton translocation associated with nitrite respiration inDesulfovibrio desulfuricans. — J. Biol. Chem.256: 5450–5458.

    CAS  PubMed  Google Scholar 

  • Stouthamer, A. H. 1980. Bioenergetic studies onParacoccus denitrificans. — Trends Biochem. Sci.5: 164–166.

    Article  CAS  Google Scholar 

  • Stouthamer, A. H. 1984. Dissimilatory reduction of oxidized nitrogen compounds.In A. J. B. Zehnder (ed.), Environmental Microbiology of Anaerobes. — John Wiley and Sons, New York (in press).

    Google Scholar 

  • Thauer, R. K., Jungermann, K. andDecker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. — Bacteriol. Rev.41: 100–180.

    CAS  PubMed  Google Scholar 

  • Tiedje, J. M., Sexstone, A. J., Myrold, D. D. andRobinson, J. A. 1982. Denitrification: ecological niches, competition and survival. — Antonie van Leeuwenhoek48: 569–583.

    CAS  PubMed  Google Scholar 

  • Timmer-Ten Hoor, A. 1975. A new type of thiosulphate oxidizing, nitrate reducing microorganism:Thiomicrospira denitrificans sp. nov. — Neth. J. Sea Res.9: 344–350.

    CAS  Google Scholar 

  • Verhoeven, W. 1956. Some remarks on nitrate and nitrite metabolism in microorganisms. p. 61–83.In W. D. McElroy and B. Glass (ed), Inorganic Nitrogen Metabolism. — John Hopkins Press, Baltimore.

    Google Scholar 

  • Watahiki, M., Hata, S. andAida, T. 1983. N2O accumulation and inhibition of N2O reduction by denitrifyingPseudomonas sp. 220A in the presence of oxygen. — Agric. Biol. Chem.47: 1991–1996.

    CAS  Google Scholar 

  • Yordy, D. M. andRuoff, K. L. 1981. Dissimilatory nitrate reduction to ammonia. p. 171–190.In C. C. Delwiche (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide. — John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, L.A., Kuenen, J.G. Aerobic denitrification — old wine in new bottles?. Antonie van Leeuwenhoek 50, 525–544 (1984). https://doi.org/10.1007/BF02386224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02386224

Keywords

Navigation