Skip to main content

Advertisement

Log in

Effect of an electrodeposited TiO2 blocking layer on efficiency improvement of dye-sensitized solar cell

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A TiO2 blocking layer in DSSC provides good adhesion between the fluorinated tin oxide (FTO) and an active TiO2 layer, and represses the electron back transport between electrolyte and FTO by blocking direct contact. In addition, it offers a more uniform layer than bare FTO glass. In this study, a dense TiO2 layer is prepared by electrodeposition technique onto an FTO substrate, and it is further used for efficiency measurement of dye-sensitized solar cell (DSSC). The thickness of TiO2 blocking layers is controlled by applied voltage and deposition time. The morphology and crystalline structure of TiO2 blocking layers are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The effect of thickness of TiO2 blocking layers on transmittance is also examined by UV-vis spectrophotometer. For the best performance of the cell efficiency, the optimum blocking layer thickness is about 450 nm fabricated at 0.7 V for 20 min. The conversion efficiency from the DSSC including the optimum blocking layer is 59.34% improved compared to the reference cell from 2.41% to 3.84%. It demonstrates that the electrodeposition is a useful method to produce TiO2 blocking layer for DSSC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Rhee and W. Kwon, Korean J. Chem. Eng., 28, 1481 (2011).

    Article  CAS  Google Scholar 

  2. M. Gratzel, J. Photochem. Photobiol. C: Photochemistry Reviews, 4, 145 (2003).

    Article  CAS  Google Scholar 

  3. E. Hong, J. H. Kim and S. Yu, Korean J. Chem. Eng., 28, 1684 (2011).

    Article  CAS  Google Scholar 

  4. D. J. Yang, S. C. Yang, J.M. Hong, H. Lee and I. D. Kim, Journal of Electroceramics, 24, 200 (2010).

    Article  CAS  Google Scholar 

  5. D. H. Lee, M. J. Lee, H. M. Song, B. J. Song, K.D. Seo, M. Pastore, C. Anselmi, S. Fantacci, F. De Angelis, M. K. Nazeeruddin, M. Gräetzel and H. K. Kim, Dyes Pigm., 91, 192 (2011).

    Article  CAS  Google Scholar 

  6. B. Yoo, K. J. Kim, S. Y. Bang, M. J. Ko, K. Kim and N. G. Park, J. Electroan. Chem., 638, 161 (2010).

    Article  CAS  Google Scholar 

  7. B. Bills, M. Shanmugam and M. F. Baroughi, Thin Solid Films, 519, 7803 (2011).

    Article  CAS  Google Scholar 

  8. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Journal of the American Chemical Society, 125, 475 (2003).

    Article  CAS  Google Scholar 

  9. H. F. Wang, L.Y. Chen, W. N. Su, J. C. Chung and B. J. Hwang, J. Phys. Chem. C, 114, 3185 (2010).

    Article  CAS  Google Scholar 

  10. J. A. Jeong and H. K. Kim, Solar Energy Materials and Solar Cells, 5, 64 (2010).

    Google Scholar 

  11. L. Meng and C. Li, Nanosci. Nanotechnol. Letters, 3, 181 (2011).

    Article  CAS  Google Scholar 

  12. K. Han and J. H. Kim, Mater. Letters, 65, 2466 (2011).

    Article  CAS  Google Scholar 

  13. S. J. Wang, Y. X. Xu, M. Ma and T. L. Fan, Materials Science Forum, 663, 848 (2011)

    Google Scholar 

  14. P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 107, 14394 (2003).

    Article  CAS  Google Scholar 

  15. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Grätzel, Chem. Commun., 34, 4351 (2005).

    Article  Google Scholar 

  16. C.Y. Kuo, S.Y. Lien, Z. S. Wu, F. S. Shieu and C. F. Chen, Nanosci. Nanotechnol. Letters, 3, 195 (2011).

    Article  CAS  Google Scholar 

  17. J. N. Hart, D. Menzies, Y. B. Cheng, G. P. Simon and L. Spiccia, Comptes Rendus Chimie, 9, 622 (2006).

    Article  CAS  Google Scholar 

  18. K. Wessels, M. Wark and T. Oekermann, Electrochim. Acta, 55, 6352 (2010).

    Article  CAS  Google Scholar 

  19. I. Mukhopadhyay, C. L. Aravinda, D. Borissov and W. Freyland, Electrochim. Acta, 50, 1275 (2005).

    Article  CAS  Google Scholar 

  20. C. C. Huang, H.C. Hsu, C.C. Hu, K. H. Chang and Y. F. Lee, Electrochim. Acta, 55, 7028 (2010).

    Article  CAS  Google Scholar 

  21. C. C. Hu, C. C. Huang and K. H. Chang, Electrochem. Commun., 11, 434 (2009).

    Article  CAS  Google Scholar 

  22. C. D. Lokhande, B. O. Park, H. S. Park, K. D. Jung and O. S. Joo, Ultramicroscopy, 105, 267 (2005).

    Article  CAS  Google Scholar 

  23. C. Lokhande, S. K. Min, K. D. Jung and O. S. Joo, J. Mater. Sci., 39, 6607 (2004).

    Article  CAS  Google Scholar 

  24. M. S. Wu, M. J. Wang, J. J. Jow, W. D. Yang, C.Y. Hsieh and H.M. Tsai, J. Power Sources, 185, 1420 (2008).

    Article  CAS  Google Scholar 

  25. E. Fatas, P. Herrasti, F. Arjona, E.G. Camarero and J. Medina, Electrochim. Acta, 32, 139 (1987).

    Article  CAS  Google Scholar 

  26. H. Chang, H. T. Su, W. A. Chen, K. David Huang, S. H. Chien, S. L. Chen and C. C. Chen, Solar Energy, 84, 130 (2010).

    Article  CAS  Google Scholar 

  27. M. Wu, Z.H. Yang, Y.H. Jiang, J. J. Zhang, S.Q. Liu and Y.M. Sun, J. Solid State Electrochem., 14, 857 (2010).

    Article  CAS  Google Scholar 

  28. I. Seigo and K. Mohammad, Int. J. Photoenergy, 2009, 8 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, KI., Hong, E. & Kim, J.H. Effect of an electrodeposited TiO2 blocking layer on efficiency improvement of dye-sensitized solar cell. Korean J. Chem. Eng. 29, 356–361 (2012). https://doi.org/10.1007/s11814-011-0291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0291-2

Key words

Navigation