Skip to main content
Log in

Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over H3PW12O40/Ce X Zr1−X O2 catalysts: Effect of acidity of the catalysts

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ce X Zr1−X O2 catalysts were prepared by a sol-gel method, and H3PW12O40/Ce X Zr1−X O2 catalysts were then prepared by an impregnation method. Both catalysts were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide in a batch reactor. NH3-TPD experiments were carried out to investigate the effect of acidity on the catalytic performance of Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2. Catalytic performance of Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2 was closely related to the acidity of the catalysts. The amount of dimethyl carbonate produced over both Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2 catalysts increased with increasing acidity of the catalysts. This indicates that acidity of the catalyst played a key role in determining the catalytic performance of Ce X Zr1−X O2 and H3PW12O40/Ce X Zr1−X O2 in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Catalytic activity of H3 PW12O40/Ce X Zr1−X O2 was higher than that of the corresponding Ce X Zr1−X O2. The enhanced catalytic performance of H3 PW12O40/Ce X Zr1−X O2 was attributed to the Brønsted acid sites provided by H3PW12O40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Keller, G. Rebmann and V. Keller, J. Mol. Catal. A, 317, 1 (2010).

    Article  CAS  Google Scholar 

  2. D. Delledonne, F. Rivetti and U. Romano, Appl. Catal. A, 221, 241 (2001).

    Article  CAS  Google Scholar 

  3. H. Babad and A. G. Zeiler, Chem. Rev., 73, 75 (1973).

    Article  CAS  Google Scholar 

  4. S. T. King, Catal. Today, 33, 173 (1997).

    Article  CAS  Google Scholar 

  5. T. Matsuzaki and A. Nakamura, Catal. Surv. Jpn., 1, 77 (1997).

    Article  CAS  Google Scholar 

  6. K. Tomishige, T. Sakaihiro, Y. Ikeda and K. Fujimoto, Catal. Lett., 58, 225 (1999).

    Article  CAS  Google Scholar 

  7. J. Kizlink, Collect. Czech. Chem. Commun., 58, 1399 (1993).

    Article  CAS  Google Scholar 

  8. T. Sakakura, J.-C. Choi, Y. Saito and T. Sako, Polyhedron, 19, 573 (2000).

    Article  CAS  Google Scholar 

  9. J. Kizlink and I. Pastucha, Collect. Czech. Chem. Commun., 60, 687 (1995).

    Article  CAS  Google Scholar 

  10. S. Fang and K. Fujimoto, Appl. Catal. A, 142, L1 (1996).

    Article  CAS  Google Scholar 

  11. T. Zhao, Y. Han and Y. Sum, Fuel Process Technol., 62, 187 (2000).

    Article  CAS  Google Scholar 

  12. K. T. Jung, J. Catal., 204, 339 (2001).

    Article  CAS  Google Scholar 

  13. K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asdullah and K. Fujimoto, Catal. Lett., 76, 71 (2001).

    Article  CAS  Google Scholar 

  14. K. Tomishige and K. Kunimori, Appl. Catal. A, 237, 103 (2002).

    Article  CAS  Google Scholar 

  15. C. Jiang, Y. Guo, C. Wang, C. Hu, Y. Wu and E. Wang, Appl. Catal. A, 256, 203 (2003).

    Article  CAS  Google Scholar 

  16. K.W. La, M. H. Youn, J. S. Chung, S.-H. Baeck and I. K. Song, Solid State Phenom., 119, 287 (2007).

    Article  CAS  Google Scholar 

  17. M. H. Youn, D. R. Park, J. C. Jung, H. Kim, M. A. Barteau and I. K. Song, Korean J. Chem. Eng., 24, 51 (2007).

    Article  CAS  Google Scholar 

  18. I. K. Song and M. A. Barteau, Korean J. Chem. Eng., 19, 567 (2002).

    Article  CAS  Google Scholar 

  19. S. R. Dhage, S. P. Gaikwad and P. Muthukumar, Mater. Lett., 58, 2704 (2004).

    Article  CAS  Google Scholar 

  20. J.G. Seo, M. H. Youn, K. M. Cho, S. Park, S. H. Lee, J. Lee, I. K. Song, Korean J. Chem. Eng., 25, 41 (2008).

    Article  CAS  Google Scholar 

  21. G. R. Rao and T. Rajkumar, J. Colloid Interface Sci., 324, 134 (2008).

    Article  CAS  Google Scholar 

  22. J. Kaspar, P. Fornasiero, G. Balducci, R. D. Monte, N. Hickey and V. Sergo, Inorg. Chim. Acta, 349, 217 (2003).

    Article  CAS  Google Scholar 

  23. G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji and A. Auroux, J. Catal., 269, 110 (2010).

    Article  CAS  Google Scholar 

  24. B. Sulikowski and R. Rachwalik, Appl. Catal. A, 256, 173 (2003).

    Article  CAS  Google Scholar 

  25. N.-Y. He, C.-S. Woo, H.-G. Kim and H.-I. Lee, Appl. Catal. A, 281, 167 (2005).

    Article  CAS  Google Scholar 

  26. Y. Izumi, R. Hasebe and K. Urabe, J. Catal., 84, 402 (1983).

    Article  CAS  Google Scholar 

  27. I.V. Kozhevnikov, K. R. Kloetstra, A. Sinnema, H.W. Zandbergen and H. V. Bekkum, J. Mol. Catal. A, 114, 287 (1996).

    Article  CAS  Google Scholar 

  28. S. Mallik, K. M. Parida and S. S. Dash, J. Mol. Catal. A, 261, 172 (2007).

    Article  CAS  Google Scholar 

  29. K. Tomishige, Y. Ikeda, T. Sakaihori and K. Fujimoto, J. Catal., 192, 355 (2000).

    Article  CAS  Google Scholar 

  30. Y. Ikeda, M. Asadullah, K. Fujimoto and K. Tonishige, J. Phys. Chem. B, 105, 10653 (2001).

    Article  CAS  Google Scholar 

  31. K. Almusaiteer, Catal. Commun., 10, 1127 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.J., Park, S., Jung, J.C. et al. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over H3PW12O40/Ce X Zr1−X O2 catalysts: Effect of acidity of the catalysts. Korean J. Chem. Eng. 28, 1518–1522 (2011). https://doi.org/10.1007/s11814-011-0020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0020-x

Key words

Navigation