Skip to main content
Log in

Direct synthesis of dimethyl carbonate from CO2 and methanol over CeO2 catalysts of different morphologies

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO2) and methanol is an attractive approach towards conversion of the greenhouse gas - CO2 into value-added chemicals and fuels. Ceria (CeO2) catalyzes this reaction. But the conversion efficiency of CeO2 is enhanced when the byproduct water in the reaction medium is separated by employing trapping agents like 2-cyanopyridine (2-CP). In this work, the influence of morphology of CeO2 on the direct synthesis of DMC in presence of 2-CP is reported. CeO2 catalysts of cube, rod, spindle and irregular morphology (Ce - C, Ce - R, Ce - S and Ce - N, respectively) were prepared, characterized and studied as catalysts in the said reaction conducted in a batch mode. Among all, Ce - S shows superior catalytic performance with nearly 100 mol% of DMC selectivity. Catalytic activity correlates with the concentration of acid and base sites of medium strength as well as defect sites. Ce - S has an optimum number of these active sites and thereby shows superior catalytic performance.

Direct synthesis of dimethyl carbonate from CO2 and methanol in presence of 2-cyanopyridine as water trapping agent was studied with CeO2 of different morphologies as a catalyst. Catalytic activity correlates with the amount of acid/base sites of medium strength, defect sites and exposed (111) facets. CeO2 with spindle morphology shows superior catalytic performance compared to rod, cube and irregular or ‘no-definite’ shape morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. http://www.cop21.gouv.fr/en/why-2c/ (accessed on 01 January 2016)

  2. Arresta M 2010 In Carbon dioxide as a chemical feedstock (Weinheim: Wiley-VcH Verlag)

  3. Unnikrishnan P and Srinivas D 2015 In Industrial catalysis and separations: Innovations for process intensification (NJ, USA: Apple Academic)

  4. Sakakura T, Choi J C and Yasuda H 2007 Chem. Rev. 107 2365

    Article  CAS  Google Scholar 

  5. Honda M, Tamura M, Nakagawa Y and Tomishige K 2014 Catal. Sci. Technol. 4 2830

    Article  CAS  Google Scholar 

  6. Tundo P and Selva M 2002 Acc. Chem. Res. 35 706

    Article  CAS  Google Scholar 

  7. Fukuoka S, Fukawa I, Tojo M, Oonishi K, Hachiya H, Aminaka M, Hasegawa K and Komiya K 2010 Catal. Surv. Asia 14 146

    Article  CAS  Google Scholar 

  8. Unnikrishnan P and Srinivas D 2015 J. Mol. Catal. A: Chem. 398 42

    Article  CAS  Google Scholar 

  9. Huang S, Yan B, Wang S and Ma X 2015 Chem. Soc. Rev. 44 3079

    Article  CAS  Google Scholar 

  10. Eta V, Mäki-Arvela P, Wärnå J, Salmi T, Mikkola J P and Murzin D Y 2011 Appl. Catal. A: Gen. 404 39

    CAS  Google Scholar 

  11. Tomishige K and Kunimori K 2002 Appl. Catal. A: Gen. 237 103

    Article  CAS  Google Scholar 

  12. Jung K T and Bell A T 2001 J. Catal. 204 339

    Article  CAS  Google Scholar 

  13. Ikeda Y, Asadullha M, Fujimoto K and Tomishige K 2001 J. Phys. Chem. B 105 10653

    Article  CAS  Google Scholar 

  14. Wang S, Zhao L, Wang W, Zhao Y, Zhang G, Ma X and Gong J 2013 Nanoscale 5 5582

    Article  CAS  Google Scholar 

  15. Unnikrishnan P, Varhadi P and Srinivas D 2013 RSC Adv. 3 23993

    Article  CAS  Google Scholar 

  16. Vinodkumar T, Naga Durgasri D, Swamy M and Reddy B M 2015 J. Chem. Sci. 127 1145

    Article  CAS  Google Scholar 

  17. Naga Durgasri D, Vinodkumar T and Reddy B M 2014 J. Chem. Sci. 126 429

    Article  Google Scholar 

  18. Dutta G, Gupta A, Waghmare U V and Hegde M S 2011 J. Chem. Sci. 123 509

    Article  CAS  Google Scholar 

  19. Sanjaykumar S R, Mukri B D, Patil S, Madras G and Hegde M S 2011 J. Chem. Sci. 123 47

    Article  CAS  Google Scholar 

  20. Gayen A, Baidya T, Ramesh G S, Srihari R and Hegde M S 2006 J. Chem. Sci. 118 47

    Article  CAS  Google Scholar 

  21. Mishra B G, Ranga Rao G and Poongodi B 2003 Proc. Ind. Acad. Sci. (J. Chem. Sci.) 115 561

    Article  CAS  Google Scholar 

  22. Honda M, Kuno S, Sonehara S, Fujimoto K -i, Suzuki K, Nakagawa Y and Tomishige K 2011 Chem. Cat. Chem. 3 365

    CAS  Google Scholar 

  23. Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Fujimoto K and Tomishige K 2013 Chem. Sus. Chem. 6 1341

    Article  CAS  Google Scholar 

  24. Wang S P, Zhou J J, Zhao S Y, Zhao Y J and Ma X B 2015 Chin. Chem. Lett. 26 1096

    Article  CAS  Google Scholar 

  25. http:// www.asahi-kasei.co.jp/asahi/en/news/2014/e150119.html (accessed on 16 April 2015)

  26. Fan T, Zhang L X, Jiu H F, Sun Y X, Liu G D, Sun Y Y and Su Q L 2010 Micro Nano Lett. 5 230

    Article  CAS  Google Scholar 

  27. Nakajima A, Yoshihara A and Ishigame M 1994 Phys. Rev. B 50 297

    Article  Google Scholar 

  28. Wu Z, Li M, Howe J, Meyer H M and Overbury S H 2010 Langmuir 26 16595

    Article  CAS  Google Scholar 

  29. Eta V, Maki-Arvela P, Leino A R, Kordas K, Salmi T, Murzin D Y and Mikkola J P 2010 Ind. Eng. Chem. Res. 49 9609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.U. acknowledges CSIR, New Delhi for the fellowship. This work forms a part of the Project “TapCoal (CSC 0102)” sponsored by CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SRINIVAS DARBHA.

Additional information

Supplementary Information (SI)

HRTEM images of Ce - N sample and catalytic activity data of Ce - S as a function of reaction temperature and reaction time are available as supporting information on the website of Journal of Chemical Sciences at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 493 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P, U., DARBHA, S. Direct synthesis of dimethyl carbonate from CO2 and methanol over CeO2 catalysts of different morphologies. J Chem Sci 128, 957–965 (2016). https://doi.org/10.1007/s12039-016-1094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1094-0

Keywords

Navigation