Skip to main content

Advertisement

Log in

Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work addresses the modeling and multi-objective optimization of methanol synthesis to efficiently utilize CO2 from the CO2 emissions and economics perspectives. Kinetic reactors for reforming and methanol synthesis reactions were used in the process simulator for modeling the entire process, and multi-objective optimization was conducted using the developed process model to maximize CO2 reduction and the economic profit. The feed composition, operating temperature and pressure of the reformer, and utility temperature of the methanol synthesis reactor were considered as arguments in the non-dominated sorting genetic algorithm (NSGA II) method with the net change of CO2 and economic profit as the objective elements, and the Pareto front showed a trade-off between CO2 reduction and economic profit. When the amount of CH4 in the feed was fixed at 500 kmol/h, CO2 reduction was 11,588 kg/h, whereas the profit was −5.79 million dollars per year. Meanwhile, a maximum profit of 20 million dollars per year resulted in CO2 emissions of 7,201 kg/h. The feed composition had the most significant influence on both objective elements (net change of CO2 and economics); as CO2 in the feed increased, CO2 reduction increased and profit decreased, while the increase of H2O in the feed increased CO2 emissions and profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. Meylan, V. Moreau and S. Erkman, J. CO2 Utilization, 12, 101 (2015).

    Article  CAS  Google Scholar 

  2. A. Otto, T. Grube, S. Schiebahn and D. Stolten, Energy Environ. Sci., 8, 3283 (2015).

    Article  CAS  Google Scholar 

  3. J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei and Y. Sun, Catal. Today, 148, 221 (2009).

    Article  CAS  Google Scholar 

  4. T. Schaub and R. A. Paciello, Angew. Chem. Int. Ed. Engl., 50, 7278 (2011).

    Article  CAS  Google Scholar 

  5. X. Xiang, L. Guo, X. Wu, X. Ma and Y. Xia, Environ. Chem. Lett., 10, 295 (2012).

    Article  CAS  Google Scholar 

  6. P. Nikolaidis and A. Poullikkas, Renew. Sust. Energy Rev., 67, 597 (2017).

    Article  CAS  Google Scholar 

  7. C.-H. Huang and C.-S. Tan, Aerosol Air Quality Res., 14, 480 (2014).

    Article  CAS  Google Scholar 

  8. N. Park, M.-J. Park, S.-C. Baek, K.-S. Ha, Y.-J. Lee, G. Kwak, H.-G. Park and K.-W. Jun, Fuel, 115, 357 (2014).

    Article  CAS  Google Scholar 

  9. G. H. Graaf, E. J. Stamhuis and A. A. C. M. Beenackers, Chem. Eng. Sci., 43, 3185 (1988).

    Article  CAS  Google Scholar 

  10. N. Park, M.-J. Park, K.-S. Ha, Y.-J. Lee and K.-W. Jun, Fuel, 129, 163 (2014).

    Article  CAS  Google Scholar 

  11. C. Zhang, K.-W. Jun, R. Gao, G. Kwak and H.-G. Park, Fuel, 190, 303 (2017).

    Article  CAS  Google Scholar 

  12. A. Alizadeh, N. Mostoufi and F. Jalali-Farahani, Int. J. Chem. React. Eng., 5, A19 (2007).

    Google Scholar 

  13. K. Atsonios, K. D. Panopoulos and E. Kakaras, Int. J. Hydrogen Energy, 41, 2202 (2016).

    Article  CAS  Google Scholar 

  14. É. S. Van-Dal and C. Bouallou, J. Cleaner Production, 57, 38 (2013).

    Article  CAS  Google Scholar 

  15. R. K. Sinnott, Chemical engineering design, Second edition. edn. Pergamon, Oxford (1993).

    Google Scholar 

  16. S. M. Walas, Chemical process equipment: Selection and design, Elsevier Science & Technology Books, Place of Publication Not Identified (1988).

  17. Commodity Markets. https://www.worldbank.org/en/research/com-modity-markets.

  18. J. M. Douglas, Conceptual design of chemical processes, International edn. McGraw-Hill, New York, London (1988).

    Google Scholar 

  19. Home — Methanol Market Services Asia. https://wwwmethanolmsa.com.

  20. M. S. Peters, Plant design and economics for chemical engineers, McGraw-Hill, New York (1958).

    Google Scholar 

  21. W. D. Seider, J. D. Seader and D. R. Lewin, Product and process design principles: Synthesis, analysis and evaluation, Rev. of: Process design principles, 1999, Wiley, New York (2004).

    Google Scholar 

  22. Homepage — U.S. Energy Information Administration (EIA). https://www.eia.gov.

  23. CAMEO Chemicals ∣ NOAA. https://cameochemicals.noaa.gov.

  24. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, Ieee T Evolut Comput, 6, 182 (2002).

    Article  Google Scholar 

  25. C. Bao, L. Xu, E. D. Goodman and L. Cao, J. Comput. Sci., 23, 31 (2017).

    Article  Google Scholar 

  26. GitHub — edgarsmdn/Aspen_HYSYS_Python: Aspen HYSYS — Python connection. https://github.com/edgarsmdn/Aspen_HYSYS_Python.

  27. J. Blank and K. Deb, IEEE Access, 8, 89497 (2020).

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Technology Innovation Program (20015460) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung-June Park or Won Bo Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J.H., Kim, S., Park, MJ. et al. Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics. Korean J. Chem. Eng. 39, 1709–1716 (2022). https://doi.org/10.1007/s11814-022-1134-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1134-z

Keywords

Navigation