Skip to main content
Log in

Physical and thermal properties of acid-graphite/styrene-butadiene-rubber nanocomposites

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In general, carbon-based materials play a major role in today’s science and technology and are required to advance with better properties to meet new requirements or to replace existing materials. We fabricated rubber composites reinforced with 5-weight% acid-graphite. The structural, mechanical and thermal properties of these composites were studied and compared. XRD studies indicated that the structure of the acid treated pristine-graphite (acid-graphite) did not change that of pristine graphite. Tensile properties of the composites indicated higher modulus, tensile strength and elongation in comparison with composites of pristine graphite, carbon black. Also, the composites were found to be in improving tendency with thermal properties and fatigue properties. The acid-graphite was investigated for surface morphology by scanning electron microscopy (SEM) and defects or purity by Raman spectroscopy. In this article, we discuss the influence of acid-graphite on rubber with high mechanical and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T Drzal and H. Fukushima, Am. Chem. Soc., Div. Polym. Chem., 42(2), 42 (2001).

    CAS  Google Scholar 

  2. A. Yasmin, J. J Luo and M. I. Daniel, Composites Sci. Technol., 66, 1182 (2006).

    Article  CAS  Google Scholar 

  3. I.M. Afanasov, V. A. Morozov, A. V. Kepman, S. G. Ionov, A. N. Seleznev, G. Van Tendeloo and V.V. Avdeev Preparation, Carbon, 47, 263 (2009).

    Article  CAS  Google Scholar 

  4. M. R. Cuervo, A. N Esther, E. Diaz, S. Ordonez, A. Vega, A. B. Dongil and R. R Inmaculada, Carbon, 46, 2096 (2008).

    Article  CAS  Google Scholar 

  5. G. Chen, W. Weng, D. Wu and C. Wu, European Polymer Journal, 39, 2329 (2003).

    Article  CAS  Google Scholar 

  6. A. Yasmin and I.M. Daniel, Polymer, 45, 8211 (2004).

    Article  CAS  Google Scholar 

  7. N. A. Kotov, Nature, 442(7100), 254 (2006).

    Article  CAS  Google Scholar 

  8. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  9. H. Kim, H. T. Hahn, L. M. Viculis, S. Gilje and R.B. Kaner, Carbon, 45, 1578 (2007).

    Article  CAS  Google Scholar 

  10. Y.X. Pan, Z. Z. Yu, Y. C. Ou and G.H. Hu, J. Polym. Sci., Part B: Polym. Phys., 38, 1626 (2000).

    Article  CAS  Google Scholar 

  11. M. Xiao, L. Sun, J. Liu, Y. Li and K. Gong, Polymer, 43, 2245 (2002).

    Article  CAS  Google Scholar 

  12. G. Chen, C. Wu, W. Weng, D. Wu and W. Yan, Polymer, 44, 1781 (2003).

    Article  CAS  Google Scholar 

  13. W. Zheng and S.C. Wong, Composites Sci. Technol., 63, 225 (2003).

    Article  CAS  Google Scholar 

  14. J.W Shen, X.M Chen and W.Y. Haung, J. Appl. Polym. Sci., 88, 1864 (2003).

    Article  CAS  Google Scholar 

  15. M.A. Lopez-Manchado, J. Biagiotti, L. Valentini and J.M. Kenny, J. Appl. Polym. Sci., 92, 3394 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S.H., Jeong, H.K., Kang, Y.G. et al. Physical and thermal properties of acid-graphite/styrene-butadiene-rubber nanocomposites. Korean J. Chem. Eng. 27, 1296–1300 (2010). https://doi.org/10.1007/s11814-010-0178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0178-7

Key words

Navigation