Skip to main content

Thermal Degradation of Synthetic Rubber Nanocomposites

  • Chapter
  • First Online:
Thermal Degradation of Polymer Blends, Composites and Nanocomposites

Abstract

In recent years, synthetic rubbers nanocomposites have captured and held the attention of scientists because are the materials for the future, which have improved resistance to thermal degradation and stability of the nanocomposite. Commonly fillers like layered silicates, carbonaceous nanofillers (carbon nanotubes, carbon naanofibers and exfoliated nanographite), spherical particles (Silica, TiO2, ZnO, CaSO4, CaCO3, ZnFe2O4) and polyhedral oligomeric silsesquioxane (POSS) are used for reinforcing elastomers. This new materials exhibit enhanced properties at very low filler level, usually ≤5 wt%. The properties of rubber nanocomposites strongly depend on the dispersion state of fillers and method of preparation. The effect to different nanoparticles on rubber properties is studied with thermal stability. This is mainly studied using TGA, TGA-MS, TGA-FTIR and other techniques. The thermal degradation mechanism of the rubber synthetic nanocomposites is generally considered to be related to the kind of used nanoparticles and its amount, the interactions between inorganic nanoparticles and polymer reactive group. Rubber synthetic nanocomposites play an important role in engineering, automotive, aerospace, construction, packaging and medical devices applications due to is possible to design new materials with unprecedented and improvements in their physical properties, particularly from the perspective of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnet, J.B.: Nano and microcomposites of polymers elastomers and their reinforcement. Compos. Sci. Technol. 63, 1085–1088 (2003)

    Google Scholar 

  2. Yehia, A.A., Akelah, A.M., Rehab, A., El-Sabbagh, S.H., Nashar, D.E., Koriem, A.A.: Evaluation of clay hybrid nanocomposites of different chain length are reinforcement agent for natural and synthetic rubbers. Mater. Des. 33, 11–19 (2012)

    Google Scholar 

  3. Periadurai, T., Vijayakumar, C.T., Balasubramanian, M.: Thermal decomposition and flame retardant behaviour of SiO2-phenolic nanocomposite. J. Anal. Appl. Pyrol. 89, 244–249 (2010)

    Google Scholar 

  4. Rybiński, P., Janowska, G., Jóźwiak, M., Jóźwiak, M.: Thermal properties and flammability of nanocomposites based on nitrile rubbers and activated halloysite nanotubes and carbon nanofibers. Thermochimica Acta 549, 6–12 (2012)

    Google Scholar 

  5. Zhang, Y., Liu, Q., Xiang, J., Frost, R.L.: Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particles sized kaolinites. Appl. Clay Sci. (2014) http://dx.doi.org/10.1016/j.clay.2014.04.002

  6. Choundhury, A., Bhowmick, A.K., Ong, C.: Effect of different nanoparticles on thermal, mechanical and dynamic mechanical properties of hydrogenated nitrile butadiene rubber nanocomposites. J. Appl. Polym. Sci. 116, 1428–1441 (2010)

    Google Scholar 

  7. Sahoo, N.G., Rana, S., Chob, J.W., Li, L., Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837–867 (2010)

    Google Scholar 

  8. Paul, D.R.; Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3104 (2008)

    Google Scholar 

  9. Mark, J.E.: Ceramic-reinforced polymers and polymer-modified ceramics. Polym. Eng. Sci. 36(24), 2905–2920 (1996)

    Google Scholar 

  10. Wen, J., Wilkes, G.L.: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8(8), 1667–1681 (1996)

    Google Scholar 

  11. von Werne, T., Patten, T.E.: Preparation of structurally well-defined polymer nanoparticle hybrids with controlled/living polymerization. J. Am. Chem. Soc. 121, 7409–7410 (1999)

    Google Scholar 

  12. Calvert, P.: Carbon Nanotubes, Ebbesen, T.W. (ed.) CRC Press, Boca Raton (1992)

    Google Scholar 

  13. Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Topics of Applied Physics, vol. 80. Springer, Heidelberg (2001)

    Google Scholar 

  14. Luo, J.J., Daniel, I.M.: Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2003)

    Google Scholar 

  15. Messermith, P.B., Giannelis, E.P.: Polymer layered silicate nanocomposites: in situ intercalative polymerization of ε-caprolactone in layered silicates. Chem. Mater. 5, 1064–1066 (1993)

    Google Scholar 

  16. Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996)

    Google Scholar 

  17. Komarneni, S.: Nanocomposites. J. Mater. Chem. 2, 1219–1230 (1992)

    Google Scholar 

  18. Ruiz-Hitzky, E.: Conducting polymer intercalated in layered solids. Adv. Mater. 5, 334–340 (1993)

    Google Scholar 

  19. Hoffman, U., Endell, K., Wilm, D.: Kristallstruktur und Quellung von Montmorillonit. (Das Tonmineral der Bentonite). Zeitschrift fur Kristallografie Mineral Petrografie Abteilung A 86, 340–348 (1993)

    Google Scholar 

  20. Okada, A., Kawasumi, M., Usuki, A., Kujima, Y.: Nylon 6-clay hybrid. Mater. Res. Soc. Symp. Proc. 171, 45–50 (1990)

    Google Scholar 

  21. Lan, T., Kaviratna, P.D., Pinnavaia, T.J.: Mechanism of clay tactoid exfoliation in epoxyclay nanocomposite. Chem. Mater. 7, 2144–2150 (1995)

    Google Scholar 

  22. Abdallah, W., Yilmazer, U.: Preparation and Characterization of thermally stable phosphonium organoclays and their use in poly (ethylene terephthalate) nanocomposites. J. Appl. Polym. Sci. 128, 4283–4293 (2013)

    Google Scholar 

  23. Gu, Z., Gao, L., Song, G., Liu, W., Li, P., Shan, C.: Octadecylammonium montmorillonite/natura rubber/cis-1,4-polybutadiene nanocomposites. Appl. Clay Sci. 50, 143–147 (2010)

    Google Scholar 

  24. Oberlin, A., Endo, M., Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)

    Google Scholar 

  25. Endo, M., Koyama, T., Hishiyama, Y.: Structure improvement of carbon fibers prepared from benzene. Jpn. J. Appl. Phys. 15(11), 2073–2076 (1976)

    Google Scholar 

  26. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Google Scholar 

  27. Prado, LASdA, Kopyniecka, A., Chandrasekaran, S., Broza, G., Roslaniec, Z., Schulte, K.: Impact of filler functionalization on the crystallinity, thermal stability and mechanical properties of thermoplastic elastomer/crbon nanotube nanocomposites. Macromol. Mater. Eng. 298, 359–370 (2013)

    Google Scholar 

  28. Iqbal, N., Bilal, M., Sagar, A., Maqsood, A.: Fabrication and characterization of multiwalled carbon nanotubes/silicon rubber composites. J. Appl. Polym. Sci. 128(4), 2439–2446 (2013)

    Google Scholar 

  29. Subramaniam, K., Das, A., Häuẞler, L., Harnisch, C., Werner, K.S., Heinrich, G.: Enhanced thermal stabity of polycloroprene rubber composites with ionic liquid modified MWCNTs. Polym. Degrad. Stab. 97, 227–287 (2012)

    Google Scholar 

  30. Xiong, X., Wang, J., Jia, H., Fang, E., Ding, L.: Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 98, 2208–2214 (2013)

    Google Scholar 

  31. Kim, H., Abdala, A., Macosko, C.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)

    Google Scholar 

  32. Peng, C.C., Gӧpfert, A., Drechsler, M., Abetz, V.: Smart silica-rubber nanocomposites in virtue of hydrogen bonding interaction. Polym. Adv. Technol. 16, 770–782 (2005)

    Google Scholar 

  33. Kickelbick, G.: Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscales. Polymer 28, 83–114 (2003)

    Google Scholar 

  34. Piña, H., Flores, V., del Castillo, L., Dominguez, O.: Processing and mechanical properties of natural rubber-ZnFe2O4 nanocomposites. J. Mater. Eng. Perform. 16, 470–476 (2007)

    Google Scholar 

  35. Sahoo, S., Bhowmick, A.K.: Influence of ZnO nanoparticles on the cure characteristics and mechanical properties of carboxylate nitrile rubber. J. Appl. Polym. Sci. 106, 3077–3083 (2007)

    Google Scholar 

  36. Mishra, S. Shimpi, N.G.: Effect of the variation in the weight percentage of the loading and reduction in the nanosizes of CaSO4 on the mechanical and thermal properties of styrene-butadiene rubber. J. Appl. Polym. Sci. 104, 2018–2016 (2007)

    Google Scholar 

  37. Zhang, Y., Lee, S., Yoonessi, M., Liang, K., Pittman, C.U.: Phenolic resin trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47, 2984–2996 (2006)

    Google Scholar 

  38. Iyer, S., Schiraldi, D.A.: Role of specific interactions and solubility in the reinforcement of bisphenol-A polymers with polyhedral oligomeric silsesquioxanes. Macromolecules 40, 4942–4952 (2007)

    Google Scholar 

  39. Hanssen, R.W.J.M., van Santen, R.A., Abbenhuis, H.C.L.: the dynamic status quo of polyhedral silsesquioxane coordination chemistry. Eur. J. Inorg. Chem. 2004, 675–683 (2004)

    Google Scholar 

  40. Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay, R., Auddy, K., Deuri, A.S.: A short review on Rubber/Clay nanocomposites with emphasis on mechanical properties. Polym. Eng. Sci. 47(11), 1956–1974 (2007)

    Google Scholar 

  41. Ganter, M., Gronski, W., Semke, H., Zilg, T., Thomann, R., Mülhaupt, R.: Surface-compatibilized layered silicates—a novel class of nanofillers for rubbers with improved mechanical properties. Kautsch. Gummi Kunstst. 54(4), 166–171 (2001)

    Google Scholar 

  42. Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: Rubber-clay nanocomposite by solution blending. J. Appl. Polym. Sci. 87, 2216–2220 (2003)

    Google Scholar 

  43. Lim, Sk, Lim, S.T., Kim, H.B., Chin, I., Choi, H.J.: Preparation and physical characterization of polyepichlorohydrin elastomer/clay nanocomposites. J. Macromol. Sci. B Phys. B 42(6), 1197–1199 (2003)

    Google Scholar 

  44. Wu, C.M., Hwang, W.G., Tien, K.C., Chang, Y.C., Fu H.L.: 11th National Conference on Science and Technology of National Defense, Taipei, Taiwan (2003)

    Google Scholar 

  45. Jeon, H.S., Rameshwaram, J.K., Kim, G.: Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J. Polym. Sci. B Polym. Phys. 42, 1000–1009 (2004)

    Google Scholar 

  46. Varghese, S., Karger-Kocsis, J.: Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 44, 4921–4927 (2003)

    Google Scholar 

  47. Zhang, L., Wang, Y., Wang, Y., Sui, Y., Yu, D.: Morphology and mechanical properties of clay/styrene butadiene rubber nanocomposites. J. Appl. Polym. Sci. 78, 1873–1878 (2000)

    Google Scholar 

  48. Wu, Y., Jia, Q., Yu, D., Zhang, L.: Structure and properties of nitrile rubber (NBR)-clay nanocomposites by co-coagulating NBR latex and clay aqueous suspension. J. Appl. Polym. Sci. 89, 3855–3858 (2003)

    Google Scholar 

  49. Wu, Y.P., Zhang, L.Q., Wang, Y.Q., Liang, Y., Yu, D.S.: Structure of carboxylated acrylonitrile-butadiene rubber (CNBR)–clay nanocomposites by co-coagulating rubber latex and clay aqueous suspension. J. Appl. Polym. Sci. 82(11), 2842–2848 (2001)

    Google Scholar 

  50. Varghese, S., Gatos, K.G., Apostolov, A.A., Karger-Kocsis, J.: Morphology and mechanical properties of layered silicate reinforced natural and polyurethane rubber blends produced by latex compounding. J. Appl. Polym. Sci. 92, 543–551 (2004)

    Google Scholar 

  51. Balachandran, M., Bhagawan, S.S.: Studies on acrylonitrile—butadiene copolymer (NBR) layered silicate composites: mechanical and viscoelastic properties. J. Compos. Mater. Sept. 45, 2011–2022 (2011)

    Google Scholar 

  52. Varghese, S., Karger-Kocsis, J.: Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J. Appl. Polym. Sci. 91, 813–819 (2004)

    Google Scholar 

  53. Mousa, A., Karger-Kocsis, J.: Rheological and thermodynamical behavior of styrene/butadiene rubber-organoclay nanocomposites. Macromol. Mater. Eng. 286, 260–266 (2001)

    Google Scholar 

  54. Kojima, Y., Fukumori, K., Usuki, A., Okada, A., Kurauchi, T.: Gas permeabilities in rubber clay hybrid. J. Mater. Sci. Lett. 12, 889–890 (1993)

    Google Scholar 

  55. Zheng, H., Zhang, Y., Peng, Z., Zhang, Y.J.: Influence of the clay modification and compatibilizer on the structure and mechanical properties of ethylene-propylene-diene rubber/montmorillonite composites. J. Appl. Polym. Sci. 92, 638–646 (2004)

    Google Scholar 

  56. Mishra, K., Kim, Il, Chang-Sik., Ha: New millable polyurethane/organoclay nanocomposite: preparation characterization and properties. Macromol. Rapid Commun. 24, 671–675 (2003)

    Google Scholar 

  57. ASTM E 176, Standard Terminology of Fire Standards. In: Annual Book of ASTM Standards. American Society for Testing and Materials. 4.07 West Conshohocken, PA

    Google Scholar 

  58. Hirschler, M.M.: Effect of oxygen on the thermal decomposition of poly(vinylidene fluoride). Eur. Polym. J. 18, 463–467 (1982)

    Google Scholar 

  59. Inabi, A., Kashiwagi, T.: A calculation of thermal degradation initiated by random scission, unsteady radical concentration. Eur. Polym. J. 23(11), 871–881 (1987)

    Google Scholar 

  60. Steckler, K.D., Kashiwagi, T., Baum, H.R., Kanemaru, K.: Analytical model for transient gasification of noncharring thermoplastic materials. In: Cox, G., Langford, B. (eds.) Proceedings of Third International Symposium on Fire Safety Science, London (1991)

    Google Scholar 

  61. Sommers, A.E., Bastow, T.J., Burgar, M.I., Forysth, M., Hill, A.J.: Quantifying rubber degradation using NMR. Polym. Degrad. Stab. 2000(70), 31–37 (2000)

    Google Scholar 

  62. Ranby, B., Rabek, J.F.: Photodegradation, photooxidation and photostabilization of polymers. Wiley, London (1975)

    Google Scholar 

  63. Stephen, R., Jose, S., Joseph, K., Thomas, S., Ommen, Z.: Thermal stability and ageing properties of sulphur and gamma radiation vulcanized natural rubber (NR) and carboxylated styrene butadiene rubber (XSBR) latices and their blends. J. Polym. Degrad. Stab. 91, 1717–1725 (2006)

    Google Scholar 

  64. Choi, S., Han, D.H., Ko, S.W., Lee, H.S.: Thermal aging behaviors of elemental sulfur-free polyisoprene vulcanisates. Bull. Korean Chem. Soc. 26, 1853–1855 (2005)

    Google Scholar 

  65. Akiba, M., Hashim, A.S.: Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 22(3), 475–521 (1997)

    Google Scholar 

  66. Gehani, R.: National innovation system and disruptive innovations in synthetic rubber and tire technology. J. Thechnol. Manag. innov. 2, 55–72 (2007)

    Google Scholar 

  67. Bhatt, R., Shah, D., Patel, K.C., Trivedi, U.: PHA-rubber blends: synthesis, characterization and biodegradation. Bioresour. Technol. 99, 4615–4620 (2008)

    Google Scholar 

  68. Arantes, T., Leao, K., Tavares, M., Ferreira, A.: NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites. Polym. Testing 28, 490–494 (2009)

    Google Scholar 

  69. Tonny, M.M., Nemr, K.F.: Application of acrylonitrile butadiene rubber for management of industrial waste silica. Mater. Sci. Eng. 1, 1–6 (2012)

    Google Scholar 

  70. Chayan, Das, Bharat, K.: Preparation and studies of nitrile rubber nanocomposites with silane modified silica nanoparticle. Research Journal of Recent Sciences 1, 357–360 (2012)

    Google Scholar 

  71. Chaichua, B., Prasassaraki, P., Poompradub, S.: In situ silica reinforcement of natural rubber by sol-gel process via rubber solution. J. Sol-Gel Sci. Technol. 52, 219–227 (2009)

    Google Scholar 

  72. Mohomane, S.M., Djokovic, V., Thomas, S., Luyt, A.S.: Polychloroprene nanocomposite filled with different organically modified clays: Morphology, thermal degradation and stress relaxation behavior. Polym. Testing 30, 585–593 (2011)

    Google Scholar 

  73. Popovic, I., Katsikas, L.: The characterization of polymer composite by thermogravimetry. Mater. Compos. 40, 7–12 (2006)

    Google Scholar 

  74. Balachandran, M., Bhagawan, S.: Mechanical, thermal and transport properties of nitrile rubber (NBR)-nanoclay composite. J. Polym. Res. 19, 2–10 (2012)

    Google Scholar 

  75. Bourbigot, S., Gilman, J.W., Wilkie, C.A.: Kinetic analysis of the thermal degradation of polystyrene montmorillonite nanocomposite. Polym. Degrad. Stab. 84(3), 483–492 (2004)

    Google Scholar 

  76. Peeterbroeck, S., Lepoittevin, B., Pollet, E., Benali, S., Broekaert, C., Alexandre, M., Bonduel, D., Viville, P., Lazzaroni, R., Dubois, P.: Polymer layered silicate/carbon nanotube nanocomposites: the catalyzed polymerization approach. Polym. Eng. Sci. 46, 1022–1030 (2006)

    Google Scholar 

  77. Gamlin, C., Markovic, G., Dutta, K., Choudhury, R., Matisons, J.G.: Structural effects on the decomposition kinetics of EPDM elastomers by high-resolution TGA and modulated TGA. J. Therm. Anal. Calorim. 591, 319–336 (2000)

    Google Scholar 

  78. Carretero, G.J., Verdejo, R., Arroyo, M., López, M.M.A.: Nuevos avances en el desarrollo de nanocompuestos elastoméricos. Suplemento de la Revista Latinoamericana de Metalurgía y Materiales S2(1), 33–34 (2009)

    Google Scholar 

  79. Zhang, J., Wang, L., Zhao, Y.: Improving performance of low-temperature hydrogenated acrylonitrile butadiene rubber nanocomposites by using nano-clays. Mater. Des. 50, 322–331 (2013)

    Google Scholar 

  80. Sadaka, F., Campistron, I., Laguerre, A., Pilard, J.F.: Telechelic oligomers obtained by metathetic degradation of both polyisoprene and styrene-butadiene rubbers. Appl. Recycl. Waste Tire Rubber 98, 736–742 (2013)

    Google Scholar 

  81. Gu, Z., Song, G., Liu, W., Li, P., Gao, L., Li, H., Hu, X.: Preparation and propertied of styrene butadiene rubber /natural rubber/ organo-bentonite nancomposite prepared from latex dispersion. Appl. Clay Sci. 46, 241–244 (2009)

    Google Scholar 

  82. Yehia, A.A., Akelah, A.M., Rehab, A., Sabbagh, S.H., Nashar, D.E., Koriem, A.A.: Evaluation of clay hybrid nanocoposite of different chain length as reinforcing agent for natural and synthetic rubbers. Mater. Des. 33, 11–19 (2012)

    Google Scholar 

  83. Cerin, O., Fontaine, G., Duquesne, S., Bourbigot, S.: Thermal stability of synthetic rubber nanocomposites. In: Mittal. V. (ed.) Recent Advance in Elastomeric Nanocomposites. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  84. Malas, A., Pal, P., Das, ChK: Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater. Des. 55, 664–673 (2014)

    Google Scholar 

  85. Cabello, Ch., Saénz, A., López, Ll, Pérez, C., Barajas, L., Ávila, C.: Modificación superficial de (MWCNT) con H2SO4/HNO3 mediante ultrasonido. Afinidad 68, 370–374 (2012)

    Google Scholar 

  86. Inukai, S., Niihara, K.-I., Noguchi, T., Ueki, H., Magario, A., Yamada, E., Inagaki, S., Endo, M.: Preparation and properties of multiwall carbon nanotubes/ polystyrene-block-polybutadiene-block-polystyrene-composite. Ind. Eng. Chem. Res. 50, 8016–8022 (2011)

    Google Scholar 

  87. Gerorge, J.J., Bhowmick, A.K.: Influence of matrix polarity on the properties of ethylene vinyl acetate-carbon nanofiller nancomposite. Nanoscale Res. Lett. 4, 655–664 (2009)

    Google Scholar 

  88. Gerorge, J.J., Bhowmick, A.K.: Ethylene vinyl acetate/expanded graphite nancomposite by solution intercalation: preparation, characterization and properties. J. Mater. Sci. 43, 702–708 (2009)

    Google Scholar 

  89. Rybinski, P., Janowska, G., Jozwiak, M., Pajak, A.: Thermal stability and flammability of butadiene-styrene rubber nanocomposites. J. Therm. Anal. Calorim. 109, 561–571 (2012)

    Google Scholar 

  90. Liu, Q., Zhang, Y., Xu, H.: Properties of vulcanized rubber nanocomposite filled with nanokaolin and precipitated silica. Appl. Clay Sci. 42, 232–237 (2008)

    Google Scholar 

  91. Madorsky, S.L.: Thermal Degradation of Polymer, Reprinted by Robert E. Kreiger, New York (1976)

    Google Scholar 

  92. Jang, L.W., Kang, C.M., Lee, D.C.: A new hybrid nanocomposite prepared by emulsion copolymerization of ABS in the presence of clay. J. Polym. Sci. Part B Polym. Phys. 39, 719–727 (2001)

    Google Scholar 

  93. Choi, Y.S., Xu, M.Z., Chung, I.J.: Synthesis of exfoliated acrylonitrile–butadiene–styrene copolymer (ABS) clay nanocomposites: role of clay as a colloidal stabilizer. Polym. Degrad. Stab. 46, 531–538 (2005)

    Google Scholar 

  94. Karahaliou, E.-K., Tarantili, P.A.: Preparation of poly(acrylonitrile–butadiene–styrene)/montmorillonite nanocomposites and degradation studies during extrusion reprocessing. J. Appl. Polym. Sci. 113, 2271–2281 (2009)

    Google Scholar 

  95. Pourabbas, B., Azimi, H.: Indirect synthesis of ABS/clay nanocomposites, comparison and thermal properties. J. Compos. Mater. 42, 2499–2522 (2008)

    Google Scholar 

  96. Wang, S.F., Hu, Y., Song, L., Wang, Z.Z., Chen, Z.Y., Fan, W.C.: Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym. Degrad. Stab. 77, 423–426 (2002)

    Google Scholar 

  97. Wang, S., Hu, Y., Lin, Z., Gui, Z., Wang, Z., Chen, Z., Fan, W.: Flammability and thermal stability studies of ABS/montmorillonite nanocomposite. Polym. Int. 52, 1045–1049 (2003)

    Google Scholar 

  98. Cai, Y., Huang, F., Xia, X., Wei, Q., Tong, X., Wei, A., Gao, W.: Comparison between structures and properties of ABS nanocomposites derived from two different kinds of OMT. J. Mater. Eng. Perform. 19, 171–176 (2010)

    Google Scholar 

  99. Ying, G.H., Fung, J.L.: Organic–inorganic composite materials from acrylonitrile–butadiene–styrene copolymers and silica through an in situ sol–gel process. J. Appl. Polym. Sci. 75, 275–283 (2000)

    Google Scholar 

  100. Yang, S., Castilleja, J.R., Barrera, E.V., Lozano, K.: Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym. Degrad. Stab. 83, 383–388 (2004)

    Google Scholar 

  101. Ma, H., Tong, L., Xu, Z., Fang, Z.: Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18, 375602 (2007)

    Google Scholar 

  102. Liu, L., Grunlan, J.C.: Clay assisted dispersion of carbon nanotubes in conductive epoxy composites. Adv. Funct. Mater. 17, 2343–2348 (2007)

    Google Scholar 

  103. Tang, C., Xiang, L., Su, J., Wang, K., Yang, C., Zhang, Q., Fu, Q.: Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J. Phys. Chem. B 112, 3876–3881 (2008)

    Google Scholar 

  104. Barick, A.K., Tripathy, D.K.: Thermal and dynamic mechanical characterization of thermoplastic polyurethane/organoclay nanocomposites prepared by melt compounding. Mater. Sci. Eng. A 527, 812–823 (2010)

    Google Scholar 

  105. Shimpi, N.G., Mishra, S.: Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites. J. Nanopart. Res. 12, 2093–2099 (2010)

    Google Scholar 

  106. Chen, G., Liu, S., Chen, S., Qi, Z.: FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposites. Macromol. Chem. Phys. 202, 1189–1193 (2001)

    Google Scholar 

  107. Chrissafis, K., Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)

    Google Scholar 

  108. Li, H., Wang, H., Wu, Y., Zhang, X., Zheng, J.: Effect of the interfacial interaction on thermal oxidative stability of carbon nanotubes/silicone rubber composites. Sci. Adv. Mater. 5, 453–461 (2013)

    Google Scholar 

  109. Wang, X., Dou, W.: Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim. Acta 529, 25–28 (2012)

    Google Scholar 

  110. Cao, X., Xu, C., Wang, Y., Liu, Y., Liu, Y., Chen, Y.: New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym. Testing 32, 819–826 (2013)

    Google Scholar 

  111. Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mater. Sci. Eng., A 527, 917–926 (2010)

    Google Scholar 

  112. He, S.-J., Wang, Y.-Q., Xi, M.-M., Lin, J., Xue, Y., Zhang, L.-Q.: Prevention of oxide aging acceleration by nano-dispersed clay in styrene-butadiene rubber matrix. Polym. Degrad. Stab. 98, 1773–1779 (2013)

    Google Scholar 

  113. Hwang, S.J., Joo, Y.L., Lee, S.J.: Properties of high-impact polystyrene/organoclay nanocomposites synthesized via in situ polymerization. J. Appl. Polym. Sci. 110, 1441–1450 (2008)

    Google Scholar 

  114. Malmberg, S.M., Parent, J.S., Pratt, D.A., Whitney, R.A.: Isomerization and elimination reactions of brominated poly(isobutylene-co-isoprene). Macromolecules 43, 8456–8461 (2010)

    Google Scholar 

  115. Kong, Q., Hu, Y., Song, L., Wang, Y., Chen, Z., Fan, W.: Influence of Fe-MMT on crosslinking and thermal degradation in silicone rubber/clay nanocomposites. Polym. Adv. Technol. 17, 463–467 (2006)

    Google Scholar 

  116. Fang, S., Hu, Y., Song, L., Wu, J.: Preparation and investigation of ethylene-vinyl acetate copolymer/silicone rubber/clay nanocomposites. J. Appl. Polym. Sci. 113, 1664–1670 (2009)

    Google Scholar 

  117. Liu, Q., Zhang, Y., Xu, H.: Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl. Clay Sci. 42, 232–237 (2008)

    Google Scholar 

  118. Prochon, M., Przepiórkowska, A.: Innovative application of biopolymer keratin as a filler of synthetic acrylonitrile-butadiene rubber NBR. J. Chem. 2013, 1–8 (2013)

    Google Scholar 

  119. Ponomarenko, S.M., Privalko, E.G., Privalko, V.P., Schön, F., Gronski, W.: Structure and thermoelasticity of synthetic rubber/silica composites. J. Macromol. Sci. Part B 43, 1231–1242 (2004)

    Google Scholar 

  120. Li, Y., Han, B., Liu, L., Zhang, F., Zhang, L., Wen, S., Lu, Y., Yang, H., Shen, J.: Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Compos. Sci. Technol. 88, 69–75 (2013)

    Google Scholar 

  121. Scotti, R., Conzatti, L., D’Arienzo, M., Di Credico, B., Giannini, L., Hanel, T., Stagnaro, P., Susanna, A., Tadiello, L., Morazzoni, F.: Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: role of the particle morphology on the filler reinforcing effect. Polymer 55, 1497–1506 (2014)

    Google Scholar 

  122. Bala, P., Samantaray, B.K., Srivastava, S.K., Nando, G.B.: Organomodified montmorillonite as filler in natural and synthetic rubber. J. Appl. Polym. Sci. 92, 3583–3592 (2004)

    Google Scholar 

  123. Dal Pont, K., Gérard, J.-F., Espuche, E.: Microstructure and properties of styrene-butadiene rubber based nanocomposites prepared from an aminosilane modified synthetic lamellar nanofiller. J. Polym. Sci. B Polym. Phys. 51, 1051–1059 (2013)

    Google Scholar 

  124. Songmin, S., Lu, G., Chun-Wah, Y.M.: Improvement of carbon nanotubes dispersion by chitosan salt and its application in silicone rubber. Compos. Sci. Technol. 86, 129–134 (2013)

    Google Scholar 

  125. Xiubin, Z., Haiyan, Z., Jin, L., Liping, L., Qiguang, W.: Thermal conductivity and thermal stability enhancement of ethylene propylene diene methylene with carbon nanotube. J. Reinf. Plast. Compos. 33, 767–774 (2014)

    Google Scholar 

  126. Peddini, S.K., Bosnyak, C.P., Henderson, N.M., Ellison, C.J., Paul, D.R.: Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 1: morphology and rheology. Polymer 55, 258–270 (2014)

    Google Scholar 

  127. Laoui, T.: Mechanical and thermal properties of styrene butadiene rubber-functionalized carbon nanotubes nanocomposites. Fuller. Nanotub. Carb. Nanostruct. 21, 89–101 (2013)

    Google Scholar 

  128. Ganter, B., Boßhammer, Irmer, U.: UV-curable silicone rubbers open up new fields. Int. Polym. Sci. Technol. 40, 1–4 (2013)

    Google Scholar 

  129. Anwar Parvez, M., Al-Mehthel, M., Al-Abdul, W.H.I., Hussein, I.A.: Utilization of sulfur and crumb rubber in asphalt modification. J. Appl. Polym. Sci. 131, 1–11 (2014)

    Google Scholar 

  130. Zanchet, A., Carli, L.N., Giovanela, M., Brandalise, R.N., Crespo, J.S.: Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Mater. Des. 39, 437–443 (2012)

    Google Scholar 

  131. Costa, P.P., Silvia, C.C., Viana, J.C., Lanceros Mendez, S.S.: Extruded thermoplastic elastomers styrene-butadiene-styrene/carbon nanotubes composites for strain sensor applications. Compos. B Eng. 57, 242–249 (2014)

    Google Scholar 

  132. Chameswary, J., Sebastian, M.: Butyl rubber–Ba0.7Sr0.3TiO3 composites for flexible microwave electronic applications. Ceram. Int. 39, 2795–2802 (2013)

    Google Scholar 

  133. Suksaeree, J., Pichayakorn, W., Monton, C., Sakunpak, A., Chusut, T., Saingam, W.: Rubber polymers for transdermal drug delivery systems. Ind. Eng. Chem. Res. 53, 507–513 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adali Castañeda Facio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Facio, A.C., Galindo, A.S., Cepeda, L.F., López, L.L., de León-Gómez, R.D. (2015). Thermal Degradation of Synthetic Rubber Nanocomposites. In: Visakh, P., Arao, Y. (eds) Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03464-5_7

Download citation

Publish with us

Policies and ethics