Skip to main content
Log in

Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study presents the results of the Sono-Fenton process for the degradation of 2,4-dichlorophenol (DCP). The influential parameters such as H2O2, Fe2+ and pH for the Sono-Fenton process were investigated. Sono-Fenton method was found to be the best one for degradation efficiency of DCP when compared with that of the Fenton process. The optimum concentrations for the degradation of DCP using conventional Fenton’s method were found to be 20 mg/L of Fe2+ and 580 mg/L of H2O2 at pH 2.5. In the case of Sono-Fenton, the optimal concentrations were found to be 10 mg/L of Fe2+ and 400 mg/L of H2O2 at pH 2.5. Sono-Fenton method resulted in the reduction of required Fe2+ concentration (50%) and H2O2 concentration (31%). In addition, this method could be applicable even at pH 5.0 and a degradation efficiency of DCP was 77.6%. Kinetic studies for the degradation of DCP proved that the degradation of DCP tends to follow pseudo first order reaction and the rate constant was found to be 7 × 10−4 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. G. Ahlborg and J. M. Thunberg, C R C Critical Reviews in Toxicology, 7, 1 (1980).

    Article  CAS  Google Scholar 

  2. H. C. Lee, J. H. In, J. H. Kim, K.Y. Hwang and C. H. Lee, Korean J. Chem. Eng., 22, 882 (2005).

    Article  CAS  Google Scholar 

  3. J. Balfanz and H. J. Rehm, Appl. Microbio. Biotech., 35, 662 (1991).

    CAS  Google Scholar 

  4. A. Farrell and B. Quilty, Wat. Res., 36, 2443 (2000).

    Article  Google Scholar 

  5. E. Munaf, R. Zein, R. Kurniadi and I. Kuriadi, Envi. Tech., 18, 355(1997).

    Article  CAS  Google Scholar 

  6. S. H. Lin, C. L. Pan and H.G. Lee, J. Haz. Mat., 65, 289 (1990).

    Article  Google Scholar 

  7. Metcalf and Eddy, Wastewater engineering: Treatment disposal and reuse, Mc Graw-hill, New York, USA (1995).

    Google Scholar 

  8. Y. O. Kim, H.U. Nam, Y. R. Park, J. H. Lee, T. J. Park and T. H. Lee, Korean J. Chem. Eng., 21, 801 (2004).

    Article  CAS  Google Scholar 

  9. M. A. Boncz, H. Bruning and W. H. Rulkens, Wat. Sci. and Tech., 47, 17 (2003).

    CAS  Google Scholar 

  10. S. Contreras, M. Rodriguez, A. F. Momani, C. Sans and S. Esplugas, Wat. Res., 37, 3164 (2003).

    Article  CAS  Google Scholar 

  11. V. Kavitha and K. Palanivelu., J. Envi. Sci. and Health, A38, 1215(2003).

    Article  CAS  Google Scholar 

  12. J.G. Lin, C. Chang and J. Wu, Wat. Sci. and Tech., 33, 75 (1996).

    Article  CAS  Google Scholar 

  13. N. H. Ince, G. Tezcanti and R. K. Belen, Appl. Catal., 29, 167 (2001).

    Article  CAS  Google Scholar 

  14. J. P. Lorimer, T. J. Manson and K. Fiddy, Ultrasonics, 29, 338 (1991).

    Article  CAS  Google Scholar 

  15. C. Petrier, A. Jeunet, J. L. Luche and G. Reveredy, J. Am. Chem. Soc., 114, 3148 (1992).

    Article  CAS  Google Scholar 

  16. L. K. Weavers, F.H. Ling and M. R. Hoffmann, Environ. Sci. Technol., 32, 2727 (1998).

    Article  CAS  Google Scholar 

  17. D. L. Sedalk and A.W. Anders, Environ. Sci. Technol., 25, 777 (1991).

    Article  Google Scholar 

  18. H. R. Eisenhauer, J. WPCF, 36, 1116 (1964).

    CAS  Google Scholar 

  19. I. Casero, S. Dolores, R. Soledad and P. B. Dolores, Wat. Res., 31,1985 (1997).

    Article  CAS  Google Scholar 

  20. B.G. Kwon, D. S. Lee, N. Kang and J. Yoon, Wat. Res., 33, 2110(1999).

    Article  Google Scholar 

  21. Standard methods for examination of water and wastewater, APHA-AWWA-WEF, American Public Health Association, Washington, D.C. (1995).

  22. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denny, Volgel’s textbook of quantitative chemical analysis (1998).

  23. V. Kavitha, Degradation of phenolic compounds in wastewater by Fenton processes, PhD. Thesis, Centre for Environmental Science, Anna University, Chennai (2003).

    Google Scholar 

  24. K. Makino, M. Magdl and P. Reise, J. Phy. Chem., 87, 1369 (1983).

    Article  CAS  Google Scholar 

  25. C. Minero, M. Lucchiari, D. Vione and V. Maurino, Envi. Sci. Tech., 39, 8936 (2005).

    Article  CAS  Google Scholar 

  26. M. R. Hoffmann, I. Hua and R. Hochemer, Ultrasonics Sonochemistry, 2, 163 (1996).

    Article  Google Scholar 

  27. Y. Yasman, V. Bultov, V.V. Gridin, S. Agur, N. Galil, R. Armon and I. Schechter, Ultrasonics Sonochemistry, 11, 365 (2004).

    CAS  Google Scholar 

  28. B. R. Puri, L. R. Sharma and S. M. Pathania, Principles of physical chemistry, Vishal publishing and co., Jalandhar (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjit, P.J.D., Palanivelu, K. & Lee, CS. Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method. Korean J. Chem. Eng. 25, 112–117 (2008). https://doi.org/10.1007/s11814-008-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0020-7

Key words

Navigation