Skip to main content
Log in

Study on Short-Term Corrosion of Stainless Steels 201 and 304 in Urban Atmosphere

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the atmosphere corrosion behavior of stainless steels (SSs) 201 and 304 was investigated by scanning electron microscopy (SEM), energy-disperse spectroscopy (EDS) and electrochemical measurements. The result shows that the steels undergo the atmosphere corrosion under the help of water in air, and the general corrosion degree of the steels increases with time. The corrosion degree of SS201 is more serious than that of SS304, and local corrosion occurs around grain boundaries. The results are simultaneously confirmed by icorr and Rp of the steels. The lower Ni content, the high MnS inclusion and the chloride-containing ingredient could be the main reasons for the high corrosion activity of SS201.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data will be made available on request.

References

  1. A.I. Shcherbakov, Theory of Dissolution of Binary Alloys and the Tamman Rule, Prot. Met., 2005, 41, p 30–35.

    Article  CAS  Google Scholar 

  2. T.L.S.L. Wijesinghe and D.J. Blackwood, Characterisation of Passive Films on 300 Series Stainless Steels, Appl. Surf. Sci., 2006, 253, p 1006–1009.

    Article  CAS  Google Scholar 

  3. R.-H. Jung, H. Tsuchiya, and S. Fujimoto, XPS Characterization of Passive Films Formed on Type 304 Stainless Steel in Humid Atmosphere, Corros. Sci., 2012, 58, p 62–68.

    Article  CAS  Google Scholar 

  4. C. García, F. Martín, P. de Tiedra, and L.G. Cambronero, Pitting Corrosion Behaviour of PM Austenitic Stainless Steels Sintered in Nitrogen–Hydrogen Atmosphere, Corros. Sci., 2007, 49, p 1718–1736.

    Article  Google Scholar 

  5. A. Fattah-alhosseini, M.A. Golozar, A. Saatchi, and K. Raeissi, Effect of Solution Concentration on Semiconducting Properties of Passive Films Formed on Austenitic Stainless Steels, Corros. Sci., 2010, 52, p 205–209.

    Article  CAS  Google Scholar 

  6. R.T. Loto, Pitting Corrosion Evaluation of Austenitic Stainless Steel Type 304 in Acid Chloride Media, J. Mater. Environ. Sci., 2013, 4, p 448–459.

    CAS  Google Scholar 

  7. Z.Y. Chen, F. Cui, and R.G. Kelly, Calculations of the Cathodic Current Delivery Capacity and Stability of Crevice Corrosion under Atmospheric Environments, J. Electrochem. Soc., 2008, 155, p 360–368.

    Article  Google Scholar 

  8. U.K. Mudali and M.G. Pujar, Pitting Corrosion of Austenitic Stainless Steels and Their Weldments, Corrosion of Austenitic Stainless Steels. H.S. Khatak, B. Raj Ed., Woodhead Publishing, 2002, p 74–105

    Chapter  Google Scholar 

  9. F.G. Wilson, Mechanism of Intergranular Corrosion of Austenitic Stainless Steels—Literature Review, Br. Corros. J., 2013, 6, p 100–108.

    Article  Google Scholar 

  10. D.-H. Xia, S. Song, Z. Qin, W. Hu, and Y. Behnamian, Review—Electrochemical Probes and Sensors Designed for Time-Dependent Atmospheric Corrosion Monitoring: Fundamentals, Progress, and Challenges, J. Electrochem. Soc., 2020, 167, p 1–10.

    Article  Google Scholar 

  11. Y.K. Cai, Y. Zhao, X.B. Ma, K. Zhou, and Y. Chen, Influence of Environmental Factors on Atmospheric Corrosion in Dynamic Environment, Corros. Sci., 2018, 137, p 163–175.

    Article  CAS  Google Scholar 

  12. D.-H. Xia, C. Ma, S. Song, and L. Xu, Detection of Atmospheric Corrosion of Aluminum Alloys by Electrochemical Probes: Theoretical Analysis and Experimental Tests, J. Electrochem. Soc., 2019, 166, p 1000–1009.

    Article  Google Scholar 

  13. Y. Zhu, T. Hu, Y. Li, J. Hao, B. Han, and Q. Yuan, Pitting Corrosion of 2A12 Aluminum Alloy Long-Scale Specimen in Simulated Seawater Splash Zone, Dynamic Waterline Zone and Full Immersion Zone, Anti-Corros. Methods Mater., 2023, 70, p 101–107.

    Article  CAS  Google Scholar 

  14. D.-H. Xia, Z. Qin, S. Song, D. Macdonald, and J.-L. Luo, Combating Marine Corrosion on Engineered Oxide Surface by Repelling, Blocking and Capturing Cl-: A Mini Review, Corros. Commun., 2021, 2, p 1–7.

    Article  Google Scholar 

  15. Y. Tsutsumi, A. Nishikata, and T. Tsuru, Monitoring of Rusting of Stainless Steels in Marine Atmospheres using Electrochemical Impedance Technique, J. Electrochem. Soc., 2006, 153, p 278–282.

    Article  Google Scholar 

  16. M. Kouřil, P. Novák, and M. Bojko, Threshold Chloride Concentration for Stainless Steels Activation in Concrete Pore Solutions, Cem. Concr. Res., 2010, 40, p 431–436.

    Article  Google Scholar 

  17. J. Hu, J. Deng, P. Deng, and G. Wang, Corrosion Monitoring Method of 304 Stainless Steel in a Simulated Marine-Industrial Atmospheric Environment: Electrochemical Noise Method, Anti-Corros. Methods Mater., 2022, 69, p 629–635.

    Article  CAS  Google Scholar 

  18. H.E. Button and D.W. Simm, The Influence of Particulate Matter on the Corrosion Behaviour of Type 316 Stainless Steel, Anti-Corros. Methods Mater., 1985, 32, p 8–10.

    Article  CAS  Google Scholar 

  19. N. Azzerri, Ageing of Passive Surfaces of Stainless Steels in an Urban-Industrial Atmosphere, Corros. Sci., 1982, 22, p 867–876.

    Article  CAS  Google Scholar 

  20. C.A. Somreck, L. Gobboon, M. Noriko, and T. Misako, Investigation of the Passive Film Formed on SUS SS304 Exposed in an Urban-Industrial Atmosphere, J. Metals Mater. Miner., 2002, 11, p 8–18.

    Google Scholar 

  21. S. Syed, Degradation of AISI304 Stainless Steel by Atmospheric Exposure in Saudi Arabia, Corros. Eng. Sci. Technol., 2009, 44, p 297–303.

    Article  CAS  Google Scholar 

  22. M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, and D.S. McPhail, Why Stainless Steel Corrodes, Nature, 2002, 415, p 770–774.

    Article  CAS  Google Scholar 

  23. Q. Meng, G.S. Frankel, H.O. Colijn, and S.H. Goss, Stainless-Steel Corrosion and MnS Inclusions, Nature, 2003, 424, p 389–390.

    Article  CAS  Google Scholar 

  24. G.D. Bao, J.E. Zuo, Y.J. Wang, and L.L. Gan, Corrosion of Stainless Steel 201, 304 and 316L in the Simulated Sewage Pipes Reactor, Environ. Sci., 2014, 35, p 3002–3006.

    CAS  Google Scholar 

  25. H. Vashishtha, R. V. Taiwade, and S. Sharma, Effect of Acetic Acid on Corrosion Behavior of AISI 201, 304 and 430 Stainless Steels, Int. J. Mater. Res., 2017, 108, p 406–415.

    Article  CAS  Google Scholar 

  26. ASTM G50-20, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, West Conshohocken, PA: ASTM International, 2020.

  27. S. Tokuda, I. Muto, Y. Sugawara, and N. Hara, Pit Initiation on Sensitized Type 304 Stainless Steel Under Applied Stress: Correlation of Stress, Cr-Depletion, and Inclusion Dissolution, Corros. Sci, 2020, 167, 108506.

    Article  CAS  Google Scholar 

  28. S. Amatsuka, M. Nishimoto, I. Muto, M. Kawamori, Y. Takara, and Y. Sugawara, Micro-Electrochemical Insights into Pit Initiation Site on Aged UNS S32750 Super Duplex Stainless Steel, Npj Mat Degrad., 2023, 7, 1–10.

    Google Scholar 

  29. ISO, 9223:2012(E) Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Classification, Determination and Estimation, in: ISO, Geneva, Switzerland, 2012.

  30. T.E. Graedel, Copper Patinas Formed in the Atmosphere—II, A Qualitative Assessment of Mechanisms, Corros. Sci., 1987, 27, p 721–740.

    Article  CAS  Google Scholar 

  31. P.B.P. Phipps and D.W. Rice, The Role of Water in Atmospheric Corrosion, Corros. Chem., 1979, 89, p 235–261.

    Article  CAS  Google Scholar 

  32. P. Dhaiveegan, N. Elangovan, T. Nishimura, and N. Rajendran, Corrosion Behavior of 316L and 304 Stainless Steels Exposed to Industrial-Marine-Urban Environment: Field Study, RSC Adv., 2016, 6, p 47314–47324.

    Article  CAS  Google Scholar 

  33. X. Wang, H. Su, Y. Xie, J. Wang, C. Feng, D. Li, and T. Wu, Atmospheric Corrosion of T2 Copper and H62 Brass Exposed in an Urban Environment, Mater. Chem. Phys., 2023, 299, p 1–16.

    Article  Google Scholar 

  34. Z.-L. Li, K. Xiao, C.-F. Dong, X.-Q. Cheng, W. Xue, and W. Yu, Atmospheric Corrosion Behavior of Low-Alloy Steels in a Tropical Marine Environment, J. Iron. Steel Res. Int., 2019, 26, p 1315–1328.

    Article  CAS  Google Scholar 

  35. Y.-N. Niu, N. Dong, S. Liu, J. Yang, P.-D. Han, and Y.-C. Wu, Effects of Different Alloying Elements M (M = Fe, Ni, Mn, Si, Mo, Cu, Y) on Cr2O3 with Cl-: A First-Principles Study, J. Iron. Steel Res. Int., 2021, 28, p 613–620.

    Article  CAS  Google Scholar 

  36. C.F. Dong, H. Luo, K. Xiao, Y. Ding, P.H. Li, and X.G. Li, Electrochemical Behavior of 304 Stainless Steel in Marine Atmosphere and Its Simulated Solution, Anal. Lett., 2013, 46, p 142–155.

    Article  Google Scholar 

  37. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man, and X. Li, The Passivity of Selective Laser Melted 316L Stainless Steel, Appl. Surf. Sci., 2020, 504, p 1–12.

    Article  Google Scholar 

  38. Y. Zhao, H. Xiong, X. Li, W. Qi, J. Wang, Y. Hua, T. Zhang, and F. Wang, Improved Corrosion Performance of Selective Laser Melted Stainless Steel 316L in the Deep-Sea Environment, Corros. Commun., 2021, 2, p 55–62.

    Article  Google Scholar 

  39. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, and X. Li, Heat Treatment Effect on the Microstructure and Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting for Proton Exchange Membrane Fuel Cells, Electrochim. Acta, 2018, 276, p 293–303.

    Article  CAS  Google Scholar 

  40. J. Castle and J. Qiu, The Application of ICP-MS and XPS to Studies of Ion Selectivity during Passivation of Stainless Steels, J. Electrochem. Soc., 1990, 137, p 2031–2038.

    Article  CAS  Google Scholar 

  41. J. Torkkeli, T. Saukkonen, and H. Hänninen, Effect of MnS Inclusion Dissolution on Carbon Steel Stress Corrosion Cracking in Fuel-Grade Ethanol, Corros. Sci., 2015, 96, p 14–22.

    Article  CAS  Google Scholar 

  42. A. Chiba, I. Muto, Y. Sugawara, and N. Hara, Effect of Atmospheric Aging on Dissolution of MnS Inclusions and Pitting Initiation Process in Type 304 Stainless Steel, Corros. Sci., 2016, 106, p 25–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful for financial support of Provincial Key R&D Program of Hunan (2021GK2008), Hunan Provincial Innovation Foundation for Postgraduate (CX20220558) and the National Scholarship Foundation (No. 202008430013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xie or Tangqing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Z., Wang, J., Su, H. et al. Study on Short-Term Corrosion of Stainless Steels 201 and 304 in Urban Atmosphere. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08857-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08857-7

Keywords

Navigation