Skip to main content
Log in

Strontium Isotope Compositions of Hydrothermal Barite from the Yonaguni IV: Insight into Fluid/Sediment Interaction and Barite Crystallization Condition

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Hydrothermal barite is a typical low-temperature mineral formed during the mixing of hydrothermal fluid and seawater. Because of its extremely low solubility, barite behaves as a close system after crystallization and preserves the geochemical fingerprint of hydrothermal fluid. In this study, the elemental contents and Sr isotope compositions of hydrothermal barites from the Yonaguni IV were determined using electron microprobe and LA-MC-ICP-MS respectively. On these bases, the fluid/sediment interaction during the hydrothermal circulation and physicochemical condition of barite crystallization were discussed. Results show that the 87Sr/86Sr values of hydrothermal barites from the Yonaguni IV are apparently higher than those of the seawater and associated volcanic rocks, indicating the sufficient interaction between the hydrothermal fluid and overlying sediment. Monomineral Sr abundance shows large variations, reflecting the changes in barite growth rate during the fluid mixing. The mineralization condition in the Yonaguni IV was unstable. During the crystallization of barite, hydrothermal fluid and seawater mixed in varying degrees, with the proportions of hydrothermal fluid varied from 36% to 72%. The calculated crystallization temperatures range from 109 to 220°C. Sediment plays a critical role during the mineralization process in the Yonaguni IV and incorporation of sediment component into hydrothermal system was prior to barite crystallization and sulfide mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Averyt, K. B., and Paytan, A., 2003. Empirical partition coefficients for Sr and Ca in marine barite: Implications for reconstructing seawater Sr and Ca concentrations. Geochemistry, Geophysics, Geosystems, 4 (5): 241–258.

    Article  Google Scholar 

  • Bischoff, J. L., and Dickson, F. W., 1975. Seawater-basalt interaction at 200°C and 500 bars: Implications for origin of seafloor heavy-metal deposits and regulation of seawater chemistry. Earth & Planetary Science Letters, 25 (3): 385–397.

    Article  Google Scholar 

  • Butterfield, D. A., Nelson, B. K., Wheat, C. G., Mottl, M., and Roe, K., 2001. Evidence for basaltic Sr in midocean ridgeflank hydrothermal systems and implications for the global oceanic Sr isotope balance. Geochimica et Cosmochimica Acta, 65 (22): 4141–4153.

    Article  Google Scholar 

  • Cardellach, E., Canals, A., and Grandia, F., 2003. Recurrent hydrothermal activity induced by successive extensional episodes: The case of the Berta F-(Pb-Zn) vein system (NE Spain). Ore Geology Reviews, 22 (1): 133–141.

    Article  Google Scholar 

  • Catanzaro, E. J., Murphy, T. J., Garner, E. L., and Shields, W. R., 1969. Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium. Journal of Research of National Bureau of Standards, 73 (5): 511–516.

    Article  Google Scholar 

  • Chiba, H., Nakashima, K., Gamo, T., Ishibashi, J., Tsunogai, U., and Sakai, H., 1993. Hydrothermal activity at the Minami-Ensei Knoll, Okinawa Trough: Chemical characteristics of hydrothermal solutions. Proceeding of the JAMSTEC Symposium Deep Sea Research, 9: 271–28. (in Japanese with English abstract).

    Google Scholar 

  • Christensen, J. N., Halliday, A. N., Lee, D. C., and Hall, C. M., 1995. In situ Sr isotopic analysis by laser ablation. Earth & Planetary Science Letters, 136 (1): 79–85.

    Article  Google Scholar 

  • Cousens, B. L., Blenkinsop, J., and Franklin, J. M., 2002. Lead isotope systematics of sulfide minerals in the middle valley hydrothermal system, northern Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 3 (5): 1–16.

    Google Scholar 

  • Damm, K. L. V., 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annual Review of Earth & Planetary Sciences, 18 (1): 173–204.

    Article  Google Scholar 

  • Dou, Y., Yang, S., Shi, X., Clift, P. D., Liu, S., Liu, J., Li, C., Bi, L., and Zhao, Y., 2016. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences. Chemical Geology, 425: 93–109.

    Article  Google Scholar 

  • Eickmann, B., Thorseth, I. H., Peters, M., Strauss, H., Brocker, M., and Pedersen, R. B., 2014. Barite in hydrothermal environments as a recorder of subseafloor processes: A multipleisotope study from the Loki’s Castle vent field. Geobiology, 12 (4): 308–321.

    Article  Google Scholar 

  • Elburg, M., Vroon, P., Wagt, B. V. D., and Tchalikian, A., 2005. Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chemical Geology, 223 (4): 196–207.

    Article  Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology. John Wiley and Sons Inc., Chichester, 1–1207.

    Google Scholar 

  • Feng, D., and Roberts, H. H., 2011. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth & Planetary Science Letters, 309 (1): 89–99.

    Google Scholar 

  • Fouquet, Y., 1993. Metallogenesis in back-arc environments: The Lau Basin example. Economic Geology, 88 (8): 2154–2181.

    Article  Google Scholar 

  • Gena, K., Chiba, H., and Kase, K., 2005. Tin-bearing chalcopyrite and platinum-bearing bismuthinite in the active Tiger chimney, Yonaguni Knoll IV seafloor hydrothermal system, South Okinawa Trough, Japan. Okayama University Earth Science Report, 12 (1): 1–5.

    Google Scholar 

  • Gena, K., Chiba, H., Kase, K., Nakashima, K., and Ishiyama, D., 2013. The tiger sulfide chimney, Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough, Japan: The first reported occurrence of Pt-Cu-Fe-bearing bismuthinite and Snbearing chalcopyrite in an active seafloor hydrothermal system. Resource Geology, 63 (4): 360–370.

    Article  Google Scholar 

  • Glasby, G. P., and Notsu, K., 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview. Ore Geology Reviews, 23 (3–4): 299–339.

    Article  Google Scholar 

  • Guo, K., Zeng, Z., Chen, S., Zhang, Y., Qi, H., and Ma, Y., 2017. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios. Journal of Asian Earth Sciences, 145: 205–216.

    Article  Google Scholar 

  • Guo, K., Zhai, S., Yu, Z., Wang, S., Zhang, X., and Wang, X., 2018. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials. Journal of Marine Systems, 180: 140–151.

    Article  Google Scholar 

  • Halbach, P., Pracejus, B., and Maerten, A., 1993. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Economic Geology, 88 (8): 2210–2225.

    Article  Google Scholar 

  • Hannington, M. D., and Scott, S. D., 1988. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of axial seamount, Juan De Fuca Ridge. Canadian Mineralogist, 26: 603–625.

    Google Scholar 

  • Hannington, M. D., Jonasson, I. R., Herzig, P. M., and Petersen, S., 1995. Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In: Seafloor Hydrothermal System: Physical, Chemical, Biological, and Geological Interactions. Humphris, S. E., et al., eds., American Geophysical Union, Washington, D. C., 115–157.

    Google Scholar 

  • Hannington, M. D., Ronde, C. E. J. D., and Petersen, S., 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Economic Geology, 100th Anniversary Volume. Hedenquist, J. W., iet al., eds., Society of Economic Geologists, Littelton, 111–141.

    Google Scholar 

  • Hanor, J. S., 2000. Barite-celestine geochemistry and environments of formation. Reviews in Mineralogy & Geochemistry, 40 (1): 193–275.

    Article  Google Scholar 

  • Hodge, V., Stallard, M., Koide, M., and Goldberg, E. D., 1986. Determination of platinum and iridium in marine waters, sediments, and organisms. Analytical Chemistry, 58 (6): 616–620.

    Article  Google Scholar 

  • Humphris, S. E., and Bach, W., 2005. On the Sr isotope and REE compositions of anhydrites from the TAG seafloor hydrothermal system. Geochimica et Cosmochimica Acta, 69 (6): 1511–1525.

    Article  Google Scholar 

  • Humphris, S. E., and Thompson, G., 1978. Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta, 42 (1): 107–125.

    Article  Google Scholar 

  • Inagaki, F., Kuypers, M. M. M., Tsunogai, U., Ishibashi, J., Nakamura, K., Treude, T., Ohkubo, S., Nakaseama, M., Gena, K., Chiba, H., Hirayama, H., Nunoura, T., Takai, K., Jorgensen, B. B., Horikoshi, K., and Boetius, A., 2006. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proceedings of the National Academy of Sciences of the United States of America, 103 (38): 14164–14169.

    Article  Google Scholar 

  • Jamieson, J. W., Hannington, M. D., Tivey, M. K., Hansteen, T., Williamson, N. M. B., Stewart, M., Fietzke, J., Butterfield, D., Frische, M., Allen, L., Cousens, B., and Langer, J., 2016. Precipitation and growth of barite within hydrothermal vent deposits from the endeavour segment, Juan de Fuca Ridge. Geochimica et Cosmochimica Acta, 173: 64–85.

    Article  Google Scholar 

  • Judat, B., and Kind, M., 2004. Morphology and internal structure of barium sulfate-derivation of a new growth mechanism. Journal of Colloid & Interface Science, 269 (2): 341–353.

    Article  Google Scholar 

  • Kamenetsky, V. S., Binns, R. A., Gemmell, J. B., Crawford, A. J., Mernagh, T. P., Maas, R., and Steele, D., 2001. Parental basaltic melts and fluids in eastern Manus Backarc Basin: Implications for hydrothermal mineralisation. Earth & Planetary Science Letters, 184 (3): 685–702.

    Article  Google Scholar 

  • Kishida, K., Sohrin, Y., Okamura, K., and Ishibashi, J., 2004. Tungsten enriched in submarine hydrothermal fluids. Earth & Planetary Science Letters, 222 (3–4): 819–827.

    Article  Google Scholar 

  • Konno, U., Tsunogai, U., Nakagawa, F., Nakaseama, M., Ishibashi, J., Nunoura, T., and Nakamura, K., 2006. Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough. Geophysical Research Letters, 33 (16): 627–642.

    Article  Google Scholar 

  • Kuhn, T., Herzig, P. M., Hannington, M. D., Garbe-Schönberg, D., and Stoffers, P., 2003. Origin of fluids and anhydrite precipitation in the sediment-hosted grimsey hydrothermal field North of Iceland. Chemical Geology, 202 (1–2): 5–21.

    Article  Google Scholar 

  • Lehuray, A. P., Church, S. E., Koski, R. A., and Bouse, R. M., 1988. Pb isotopes in sulfides from mid-ocean ridge hydrothermal sites. Geology, 16 (4): 362–365.

    Article  Google Scholar 

  • Li, S., Xu, J., and Luo, G., 2007. Control of crystal morphology through supersaturation ratio and mixing conditions. Journal of Crystal Growth, 304 (1): 219–224.

    Article  Google Scholar 

  • Marchev, P., Downes, H., Thirlwall, M. F., and Moritz, R., 2002. Small-scale variations of 87Sr/86Sr isotope composition of barite in the Madjarovo low-sulphidation epithermal system, SE Bulgaria: Implications for sources of Sr, fluid fluxes and pathways of the ore-forming fluids. Mineralium Deposita, 37 (6–7): 669–677.

    Article  Google Scholar 

  • Marumo, K., and Hattori, K. H., 1999. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotope characteristics. Geochimica et Cosmochimica Acta, 63 (18): 2785–2804.

    Article  Google Scholar 

  • Matsumoto, T., Kinoshita, M., Nakamura, M., Sibuet, J. C., Lee, C. S., Hsu, S. K., Oomori, T., Shinjo, R., Hashimoto, Y., Hosoya, S., Imamura, M., Ito, M., Tukuda, K., Yagi, H., Takekawa, K., Kagaya, I., Hokakubo, S., Okada, T., and Kimura, M., 2002. Volcanic and hydrothermal activities and possible ‘segmentation’ of the axial rifting in the westernmost part of the Okinawa Trough: Preliminary results from the Yokosuka/Shinkai 6500 Lequios cruise. Journal of Deep Sea Research, 19: 95–107.

    Google Scholar 

  • Matter, A., Peters, T., and Ramseyer, K., 1987. 87Sr/86Sr-Verhältnisse und Sr-Gehalte von Tiefengrundwässern, Mineralien sowie Gesteinen us dem Kristallin und der Trias der Nord-schweiz. Eclogae Geologicae Helvetiae, 80 (2): 579–592.

    Google Scholar 

  • Mcculloch, M. T., and Gamble, J. A., 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth & Planetary Science Letters, 102 (3–4): 358–374.

    Article  Google Scholar 

  • Mottl, M. J., and Holland, H. D., 1978. Chemical exchange during hydrothermal alteration of basalt by seawater–I. Experimental results for major and minor components of seawater. Geochimica et Cosmochimica Acta, 42: 1103–1115.

    Article  Google Scholar 

  • Noguchi, T., Shinjo, R., Ito, M., Takada, J., and Oomori, T., 2011. Barite geochemistry from hydrothermal chimneys of the Okinawa Trough: Insight into chimney formation and fluid/ sediment interaction. Journal of Mineralogical & Petrological Sciences, 106 (1): 26–35.

    Article  Google Scholar 

  • Nunoura, T., and Takai, K., 2009. Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. Fems Microbiology Ecology, 67 (3): 351–370.

    Article  Google Scholar 

  • Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, 366 (6454): 445–449.

    Article  Google Scholar 

  • Paytan, A., Mearon, S., Cobb, K. M., and Kastner, M., 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology, 30 (8): 747–750.

    Article  Google Scholar 

  • Ray, D., Kota, D., Das, P., Prakash, L. S., Khedekar, V. D., Paropkari, A. L., and Mudholkar, A. V., 2014. Microtexture and distribution of minerals in hydrothermal barite-silica chimney from the Franklin Seamount, SW Pacific: Constraints on mode of formation. Acta Geologica Sinica, 88 (1): 213–225.

    Article  Google Scholar 

  • Sasaki, N., and Minato, H., 1983. Effect of the degree of supersaturation upon apparent partition coefficients of lead and strontium ions between BaSO4 and aqueous solution. Mineralogical Journal, 11 (8): 365–381.

    Article  Google Scholar 

  • Seyfried, W. E., Seewald, J. S., Berndt, M. E., Ding, K., and Foustoukos, D. I., 2003. Chemistry of hydrothermal vent fluids from the main endeavour field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. Journal of Geophysical Research–Solid Earth, 108 (B9): 1–23.

    Article  Google Scholar 

  • Shikazono, N., 1994. Precipitation mechanisms of barite in sulfate-sulfide deposits in back-arc basins. Geochimica et Cosmochimica Acta, 58 (10): 2203–2213.

    Article  Google Scholar 

  • Shikazono, N., Kawabe, H., and Ogawa, Y., 2012. Interpretation of mineral zoning in submarine hydrothermal ore deposits in terms of coupled fluid flow-precipitation kinetics model. Resource Geology, 62 (4): 352–368.

    Article  Google Scholar 

  • Staude, S., Göb, S., Pfaff, K., Ströbele, F., Premo, W. R., and Markl, G., 2011. Deciphering fluid sources of hydrothermal systems: A combined Sr- and S-isotope study on barite (Schwarzwald, SW Germany). Chemical Geology, 286 (1–2): 1–20.

    Article  Google Scholar 

  • Suzuki, R., Ishibashi, J. I., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K., and Chiba, H., 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough Back-Arc Basin. Resource Geology, 58 (3): 267–288.

    Article  Google Scholar 

  • Tivey, M. K., and Delaney, J. R., 1986. Growth of large sulfide structures on the endeavour segment of the Juan de Fuca Ridge. Earth & Planetary Science Letters, 77 (3): 303–317.

    Article  Google Scholar 

  • Tivey, M. K., Olson, L. O., Miller, V. W., and Light, R. D., 1990. Temperature measurements during initiation and growth of a black smoker chimney. Nature, 346 (6279): 51–54.

    Article  Google Scholar 

  • Turcotte, D. L., and Brown, S. R., 1997. Fractals and Chaos in Geology and Geophysics. Cornell University, New York, 1–347.

    Book  Google Scholar 

  • Wang, S., Zhai, S., Yu, Z., Guo, K., and Zhang, X., 2018. Reflections on the model of modern seafloor hydrothermal system. Earth Sciences, 43 (3): 835–85. (in Chinese with English abstract).

    Google Scholar 

  • Widanagamage, I. H., Schauble, E. A., Scher, H. D., and Griffith, E. M., 2014. Stable strontium isotope fractionation in synthetic barite. Geochimica et Cosmochimica Acta, 147: 58–75.

    Article  Google Scholar 

  • Yang, K., and Scott, S. D., 1996. Possible contribution of a metalrich magmatic fluid to a sea-floor hydrothermal system. Nature, 383 (6599): 420–423.

    Article  Google Scholar 

  • You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., and Spivack, A. J., 1996. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth & Planetary Science Letters, 140 (1–4): 41–52.

    Article  Google Scholar 

  • Zeng, Z., Ma, Y., Chen, S., Selby, D., Wang, X., and Yin, X., 2017. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation. Ore Geology Reviews, 87: 155–171.

    Article  Google Scholar 

  • Zhang, L., Ren, Z. Y., Wu, Y. D., and Li, N., 2018a. Strontium isotope measurement of basaltic glasses by laser ablation multiple collector inductively coupled plasma mass spectrometry based on a linear relationship between analytical bias and Rb/Sr ratios. Rapid Communications in Mass Spectrometry, 32 (2): 105–112.

    Article  Google Scholar 

  • Zhang, X., Zhai, S., Yu, Z., Guo, K., and Wang, S., 2019a. Subduction contribution to the magma source of the Okinawa Trough–Evidence from boron isotopes. Geological Journal, 54: 605–613.

    Article  Google Scholar 

  • Zhang, X., Zhai, S., Yu, Z., Yang, Z., and Xu, J., 2019b. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough. Ore Geology Reviews, 111: 102944, https://doi.org/10.1016/j.oregeorev.2019.102944.

    Article  Google Scholar 

  • Zhang, X., Zhai, S., Yu, Z., Wang, S., and Cai, Z., 2018b. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough. Journal of Marine Systems, 180: 124–131.

    Article  Google Scholar 

  • Zierenberg, R. A., Koski, R. A., Morton, J. L., and Bouse, R. M., 1993. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge. Economic Geology, 88 (8): 2069–2098.

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Basic Research Program of China (No. 2013CB429702). We thank the two anonymous reviewers for their helpful comments in the early version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikui Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhai, S. & Yu, Z. Strontium Isotope Compositions of Hydrothermal Barite from the Yonaguni IV: Insight into Fluid/Sediment Interaction and Barite Crystallization Condition. J. Ocean Univ. China 19, 377–385 (2020). https://doi.org/10.1007/s11802-020-4021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4021-4

Key words

Navigation