Skip to main content
Log in

Lead Induces Different Responses of Two Subpopulations of Phagocytes in the Holothurian Eupentacta fraudatrix

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In view of increasing lead pollution (Pb2+) of coastal waters, the compensatory abilities of holothurians need to be assessed. The goal of the work is to clarify the functional and phenotypical differences between two types of phagocytes (P1 and P2) in Eupentacta fraudatrix exposed to Pb(NO3)2. It has been shown that 2 mg L−1 lead exposure for 48 h increases the number of P2 phagocytes as compared to P1 cells, does not significantly affect cell viability in both P1 and P2 phagocyte fractions, and significantly enhances chromatin condensation in P2 but not in P1 phagocytes. A lead concentration of 4 mg L−1 increases the number of P1 phagocytes compared to that of P2 type, and does not change cell viability and chromatin condensation in P1 phagocytes. In the P2 type, it decreases cell viability and does not influence the level of apoptosis. The protection against lead-induced apoptosis is apparently mediated by the activities of antioxidant enzymes, especially glutathione S-transferase. The differences in labeling cell surface receptors of P1 and P2 phagocytes by plant lectins also indicate the specific phenotypic properties of these cells. The results clarify the potential and GSH-dependent mechanisms of immune adaptation in holothurians that have been shortly exposed to lead at concentrations close to the maximum environmentally relevant level in coastal waters. Additionally, P1 and P2 phagocytes are first shown to have different functions and phenotypes during the response to lead, which indicates the complexity of the phagocytic system in holothurians and contributes to understanding the immunity evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldahmash, B. A., and El-Nagar, D. M., 2016. Antioxidant effects of captopril against lead acetate-induced hepatic and splenic tissue toxicity in Swiss albino mice. Saudi Journal of Biological Sciences, 23 (6): 667–673, DOI: 10.1016/j.sjbs.2016.05.005.

    Article  Google Scholar 

  • Ahamed, M., and Siddiqui, M. K., 2007. Low level lead exposure and oxidative stress: Current opinions. Clinica Chimica Acta, 383 (1-2): 57–64, DOI: 10.1016/j.cca.2007.04.024.

    Article  Google Scholar 

  • Arbneshi, T., Rugova, M., and Berisha, L., 2008. The level concentration of lead, cadmium, copper, zinc and phenols in the water river of Sitnica. Journal of International Environmental Application & Science, 3 (2): 66–73.

    Google Scholar 

  • Bryan, G. W., and Langston, W. J., 1991. Bioavailability, accumulation and effects of heavy metal in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution, 76 (2): 89–131.

    Article  Google Scholar 

  • Catarino, A., Cabral, H. N., Peeters, K., Pernet, P., Punjabi, U., and Dubois, P., 2008. Metal concentrations, sperm motility, and RNA/DNA ratio in two echinoderm species from a highly contaminated fjord (the Sørfjord, Norway). Environmental Toxicology and Chemistry, 27 (7): 1553–1560, DOI: 10.1897/07-402.

    Article  Google Scholar 

  • Cherkesova, D. U., Rabadanova, A. I., Muradova, G. R., and Gabibov, M. M., 2012. Dose and time-dependent lead influence on survival rate and condition of oxidizing and antioxidatic system of russian sturgeon (Acipenser gueldenstaedti Brant) young fishes. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 14: 1937–1940 (in Russian with English abstract).

    Google Scholar 

  • Chia, F-S., and Xing, J., 1996. Echinoderm coelomocytes. Zoological Studies, 35 (4): 231–254.

    Google Scholar 

  • Chiarelli, R., and Roccheri, M. C., 2014. Marine invertebrates as bioindicators of heavy metal pollution. Open Journal of Metal, 4: 93–106, DOI: 10.4236/ojmetal.2014.44011.

    Article  Google Scholar 

  • Colussi, C., Albertini, M. C., Coppola, S., Rovidati, S., Galli, F., and Ghibelli, L., 2000. H2O2-induced block of glycolysis as an active ADP ribosylation reaction protecting cells from apoptosis. FASEB Journal, 14 (4): 2266–2276, DOI: 10.1096/fj.00-0074com.

    Article  Google Scholar 

  • Curi, T., Demelo, M., Palanca, A., Miyasaka, C., and Curi, R., 1998. Percentage of phagocytosis, production of O2 -, H2O2 and NO, and antioxidant enzyme activities of rat neutrophils in culture. Cell Biochemistry and Function, 16 (1): 43–48, DOI: 10.1002/(SICI)1099-0844(199803)16:1<43::AID-CBF761>3.0.CO;2-5.

    Article  Google Scholar 

  • Delbos, M., Saïdi, N., and Gipouloux, J. D., 1983. Inhibitory effect of lectins extracted from Arachis hypogea and soybeans on germ cell migration in the embryo of Xenopus laevis (Amphibia, Anura). Comptes rendus de l’Académie des Sciences III, 296 (14): 645–650 (in French).

    Google Scholar 

  • Dini, L., Falasca, L., Lentini, A., Mattioli, P., Piacentini, M., Piredda, L., and Autuori, F., 1993. Galactose-specific receptor modulation related to the onset of apoptosis in rat liver. European Journal of Cell Biology, 61 (2): 329–337.

    Google Scholar 

  • Dolmatov, I. Y., Dolmatova, L. S., Shitkova, O. A., and Kovaleva, A. L., 2005. Dexamethasone-induced apoptosis of holothurian Eupentacta fraudatrix phagocytes. In: Echinoderms: Munchen. Proceedings of the 11th International Conference. Taylor & Francis, London, 105–111.

    Google Scholar 

  • Dolmatova, L. S., Eliseykina, M. G., Timchenko, N. F., Kovaleva, A. L., and Shitkova, O. A., 2003. Generation of reactive oxygen species in the different fractions of the coelomocytes of holothurian Eupentacta fraudatrix in response to the thermostable toxin of Yersinia pseudotuberculosis in vitro. Chinese Journal of Oceanology and Limnology, 21 (4): 293–304, DOI: 10.1007/BF02860423.

    Article  Google Scholar 

  • Dolmatova, L. S., Romashina, V. V., and Eliseikina, M. G., 2004. Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix. Journal of Evolutionary Biochemistry and Physiology, 40: 126–135, DOI: 10. 1023/B:JOEY.0000033803.35634.46.

    Article  Google Scholar 

  • Dolmatova, L. S., Slinko, E. N., and Kolosova, L. F., 2010a. The contents of heavy metals in tissues of holothurians Eupentacta fraudatrix in Peter the Great Gulf. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences, 12: 1287–1291 (in Russian with English abstract).

    Google Scholar 

  • Dolmatova, L. S., Timchenko, N. F., and Stasenko, N. J., 2007. Characteristics of content and medico-biological studies of the complex of biologically active substances from the Far Eastern species of sea cucumbers. In: Far Eastern Seas of Russia. Book 2. Research of Marine Ecosystems and Bioresources. Nauka, Moscow, 684–694 (in Russian).

    Google Scholar 

  • Dolmatova, L., Zaika, O., Slinko, E., and Kolosova, L., 2010b. Antioxidant enzyme defense and heavy metal accumulation in tissues of holothurians Apostichopus japonicus and Eupentacta fraudatrix: Characteristics of body-length dependences during spring-summer period. Pacific Oceanography, 5 (1): 96–105.

    Google Scholar 

  • Flora, S. J. S., Mittal, M., and Mehta, A., 2008. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian Journal of Medical Research, 128 (4): 501–523.

    Google Scholar 

  • Gargioni, R., Filipak, N. F., Buchi, D. F., Randi, M. A., Franco, C. R., Paludo, K. S., Pelletier, E., Ferraro, M. V., Cestari, M. M., Bussolaro, D., and Oliveira, R. C. A., 2006. Cell death and DNA damage in peritoneal macrophages of mice (Mus musculus) exposed to inorganic lead. Cell Biology International, 30 (7): 615–623, DOI: 10.1016/j.cellbi.2006.03.010.

    Article  Google Scholar 

  • Gnedkova, I. A., Lisyany, N. I., Stanetskaya, D. N., Rozumenko, V. D., Glavatskiy, A. Y., Shmeleva, A. A., Malysheva, T. A., Chernenko, O. G., and Gnedkova, M. A., 2015. Properties of glioma C6 cells. Oncologiya, 17 (1): 4–11 (in Russian with English abstract).

    Google Scholar 

  • Habig, W. H., Pabst, M. J., and Jackoby, W. B., 1974. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249 (22): 7130–7139.

    Google Scholar 

  • Hande, G., and Naran, E., 2000. Can antioxidants be beneficial in the treatment of lead poisoning. Free Radical Biology and Medicine, 29 (10): 927–945, DOI: 10.1016/S0891-5849(00) 00413–5.

    Article  Google Scholar 

  • Hochachka, P. W., and Somero, G. N., 1984. Biochemical Adaptation. Princeton University Press, Princeton, 560pp.

    Google Scholar 

  • Hogan, G. R., and Adams, D. P., 2004. Lead-induced leukocytosis in female mice. Archives of Toxicology, 41 (4): 295–300.

    Article  Google Scholar 

  • Homa, J., Olchawa, E., Stürzenbaum, S. R., Morgan, A. J., and Plytycz, B., 2005. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions. Environmental Pollution, 135 (2): 275–280, DOI: 10.1016/j.envpol.2004.10.019.

    Article  Google Scholar 

  • Homa, J., Stalmach, M., Wilczek, G., and Kolaczkowska, E., 2016. Effective activation of antioxidant system by immunerelevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. Journal of Comparative Physiology B, 186: 417–430, DOI: 10.1007/s00360-016-0973-5.

    Article  Google Scholar 

  • Huang, S. L., and Onyx, W. H. W., 2004. A review of heavy metal pollution in the Pearl River Estuary. Journal of Hydrodynamics, 164: 367–378.

    Google Scholar 

  • Italiani, P., and Boraschi, D., 2014. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Frontiers in Immunology, 5: 514, DOI: 10.3389/fimmu.2014.00514.

    Google Scholar 

  • Jacob, J. M., Kumar, B. S., and Mohan, B. R., 2013. Selenium and lead tolerance in fungi isolated from sea water. International Journal of Innovative Research in Science, Engineering and Technology, 2 (7): 2975–2982.

    Google Scholar 

  • Kasten-Jolly, J., and Lawrence, D. A., 2014. Lead modulation of macrophages causes multiorgan detrimental health effects. Journal of Biochemical and Molecular Toxicology, 28 (8): 355–372, DOI: 10.1002/jbt.21572.

    Article  Google Scholar 

  • Kim, S-M., Fujihara, M., Sahare, M., Minami, N., Yamada, M., and Imai, H., 2014. Effects of extracellular matrices and lectin Dolichos biflorus agglutinin on cell adhesion and selfrenewal of bovine gonocytes cultured in vitro. Repro-duction, Fertility and Development, 26 (2): 268–281, DOI: 10.1071/RD12214.

    Article  Google Scholar 

  • Komatsu, N., Oda, T., and Muramatsu, T., 1998. Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and Pseudomonas toxin. Journal of Biochemistry, 124 (5): 1038–1044.

    Article  Google Scholar 

  • Korshenko, A. (ed.), 2016. Water Pollution. Annual Report 2015. Nauka, Moscow, 184pp (in Russian with English abstract).

    Google Scholar 

  • Krocova, Z., Macela, A., Kroca, M., and Hernychova, L., 2000. The immunomodulatory effect(s) of lead and cadmium on the cells of immune system in vitro. Toxicology in Vitro, 14 (1): 33–40.

    Article  Google Scholar 

  • Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., El-Deiry, W. S., Golstein, P., Green, D. R., Hengartner, M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nuñez, G., Peter, M. E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., and Melino, G., 2009. Classification of cell death: Recommendations of the nomenclature committee on cell death. Cell Death and Differentiation, 16 (1): 3–11, DOI: 10.1038/cdd.2008.150.

    Article  Google Scholar 

  • Martins-Souza, R. L., Pereira, C. A. J., Martins Filho, O. A., Coelho, P. M. Z., Corrêa, A., and Negrão-Corrêa, D., 2006. Differential lectin labelling of circulating hemocytes from Biomphalaria glabrata and Biomphalaria tenagophila resistant or susceptible to Schistosoma mansoni infection. The Memórias do Instituto Oswaldo Cruz, 101 (Suppl. I): 185–192.

    Article  Google Scholar 

  • McAloon, K. M., and Mason, R. P., 2003. Investigations into the bioavailability and bioaccumulation of mercury and other trace metals to the sea cucumber, Sclerodactyla briareus, using in vitro solubilization. Marine Pollution Bulletin, 46 (12): 1600–1608, DOI: 10.1016/S0025-326X(03)00326-6.

    Article  Google Scholar 

  • McKenzie, A. N. J., and Preston, T. M., 1992. Functional studies on Calliphora vomitoria haemocyte subpopulations defined by lectin staining and density centrifugation. Developmental and Comparative Immunology, 16 (1): 19–30.

    Article  Google Scholar 

  • Michaeloudes, C., Kirkham, P., Adcock, I. M., and Chung, K. F., 2015. Mitochondrial reactive oxygen species and glycolysis in airway smooth muscle cell proliferation in COPD. European Respiratory Journal, 46 (S59): OA488, DOI: 10.1183/13993003.congress-2015.OA488.

    Google Scholar 

  • Mills, E. L., and O’Neill, L. A., 2016. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. European Journal of Immunology, 46 (1): 13–21, DOI: 10.1002/eji.201445427.

    Article  Google Scholar 

  • Mohammadizadeh, M., Bastami, K. D., Ehsanpour, M., Afkhami, M., Mohammadizadeh, F., and Esmaeilzadeh, M., 2016. Heavy metal accumulation in tissues of two sea cucumbers, Holothuria leucospilota and Holothuria scabra in the northern part of Qeshm Island, Persian Gulf. Marine Pollution Bulletin, 103 (1-2): 354–359, DOI: 10.1016/j.marpolbul.2015. 12.033.

    Article  Google Scholar 

  • Muraille, E., Leo, O., and Moser, M., 2014. TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism. Frontiers in Immunology, 5: 603, DOI: 10.3389/fimmu.2014.00603.

    Google Scholar 

  • Naumov, Y. A., 2007. The anthropogenic impact on the coastal shelf zone of Russia’s Far-Eastern seas (a case study of the Peter the Great Bay). Geography and Natural Resources, 1: 106–114.

    Google Scholar 

  • Orihuela, R., McPherson, C. A., and Harry, G. J., 2016. Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology, 173 (4): 649–665, DOI: 10.1111/bph.13139.

    Article  Google Scholar 

  • Patrick, L., 2006. Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review, 11 (2): 114–127.

    Google Scholar 

  • Pershyn, O., Kocheshkova, N., Vorobets, Z., and Antonjak, H., 2009. Effect of Pb2+ upon antioxidant enzymes activity of rat lymphocytes. Annales Universitatis Mariae Curie-Sklodowska, XXII: 23–26.

    Google Scholar 

  • Peterson, J. D., Herzenberg, L. A., Vasquez, K., and Waltenbaugh, C., 1998. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proceedings of the National Academy of Sciences USA, 95 (6): 3071–3076.

    Article  Google Scholar 

  • Poromov, A. A., Peretykin, A. A., and Smurov, A. V., 2014. Influence of salinity on bioconcentration and genotoxicity of heavy metals for Asterias rubens L. sea stars. Izvestiya MGTU MAMI, 3 (21): 43–49 (in Russian with English abstract).

    Google Scholar 

  • Rocke, T. E., and Samuel, M. D., 1991. Effects of lead shot ingestion on selected cells of the mallard immune system. Journal of Wildlife Diseases, 27 (1): 1–9, DOI: 10.7589/0090-3558-27.1.1.

    Article  Google Scholar 

  • Roomi, M. W., Columbano, A., Ledda-Columbano, G. M., and Sarma, D. S., 1986. Lead nitrate induces certain biochemical properties characteristic of hepatocyte nodules. Carcinogenesis, 7 (10): 1643–1646.

    Article  Google Scholar 

  • Rosenberg, C. E., Fink, N. E., Arrieta, M. A., and Salibian, A., 2003. Effect of lead acetate on the in vitro engulfment and killing capability of toad (Bufo arenarum) neutrophils. Comparative Biochemistry and Physiology Part C, 136 (3): 225–233.

    Google Scholar 

  • Ruzittu, M., Carla, E. C., Montinari, M. R., Maietta, G., and Dini, L., 1999. Modulation of cell surface expression of liver carbohydrate receptors during in vivo induction of apoptosis with lead nitrate. Cell and Tissue Research, 298 (1): 105–112.

    Article  Google Scholar 

  • Saïdi, S. A., Salah, A. M., Windmolders, P., and El Feki, A., 2013. Cytotoxicity evaluation and antioxidant enzyme expression related to heavy metals found in tuna by-products meal: An in vitro study in human and rat liver cell lines. Experimental and Toxicologic Pathology, 65 (7-8): 1025–1033, DOI: 10.1016/j.etp.2013.03.001.

    Article  Google Scholar 

  • Sandhir, R., Julka, D., and Gill, K. D., 1994. Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacology and Toxicology, 74 (2): 66–71.

    Article  Google Scholar 

  • Seco-Rovira, V., Beltrán-Frutos, E., Ferrer, C., Sánchez-Huertas, M. M., Madrid, J. F., Saez, F. J., and Pastor, L. M., 2013. Lectin histochemistry as a tool to identify apoptotic cells in the seminiferous epithelium of Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Reproduction in Domestic Animals, 48 (6): 974–983, DOI: 10.1111/rda.12196.

    Article  Google Scholar 

  • Shabani, A., and Rabbani, A., 2000. Lead nitrate induced apoptosis in alveolar macrophages from rat lung. Toxicology, 149 (2-3): 109–114.

    Article  Google Scholar 

  • Sharma, S., Sharma, V., Paliwal, R., and Pracheta, D., 2011. Lead toxicity, oxidative damage and health implications. A review. International Journal of Biotechnology and Molecular Biology Research, 2 (13): 215–221, DOI: 10.5897/IJBMBRX11.002.

    Google Scholar 

  • Sharma, V., Sharma, A., and Kansal, L., 2010. The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food and Chemical Toxicology, 48 (3): 928–936, DOI: 10.1016/j.fct.2010.01.002.

    Article  Google Scholar 

  • Shulkin, V. M., and Bogdanova, N. N., 2003. Mobilization of metals from riverine suspended matter in seawater. Marine Chemistry, 83: 157–167, DOI: 101016/S0304-4203(03)001 09–9.

    Article  Google Scholar 

  • Singh, N., Bhagat, J., and Ingole, B. S., 2017. Genotoxicity of two heavy metal compounds: Lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera. Environmental Monitoring and Assessment, 189 (7): 308, DOI: 10.1007/s10661-017-5993.

    Article  Google Scholar 

  • Spolarics, Z., and Wu, J. X., 1997. Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. American Journal of Physiology, 273 (6 Pt 1): G1304–G1311.

    Google Scholar 

  • Taheri, R., Salamat, N., and Movahedinia, A., 2015. Using immune responses in Euryglossa orientalis and Acanthopagrus latus from Persian Gulf as indicators of environmental health. Marine Pollution Bulletin, 98 (1-2): 47–57, DOI: 10.1016/j.marpolbul.2015.07.014.

    Article  Google Scholar 

  • Tan, H., Wang, N., Li, S., Hong, M., Wang, X., and Feng, Y., 2016. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxidative Medicine and Cellular Longevity, 2016 (4): 1–16, DOI: 10.1155/2016/2795090.

    Google Scholar 

  • Tan, W. H., and Lim, L. H., 1984. The tolerance to and uptake of lead in the green mussel, Perna viridis (L.). Aquaculture, 42 (3-4): 317–332, DOI: 10.1016/0044-8486(84)90110-8.

    Article  Google Scholar 

  • Tátrai, E., Kováciková, Z., Hudák, A., Adamis, Z., and Ungváry, G., 2001. Comparative in vitro toxicity of cadmium and lead on redox cycling in type II pneumocytes. Journal of Applied Toxicology, 21 (6): 479–483.

    Article  Google Scholar 

  • Wang, J., Ren, T., Han, Y., Zhao, Y., Liao, M., Wang, F., and Jiang, Z., 2015. The effects of dietary lead on growth, bioaccumulation and antioxidant capacity in sea cucumber, Apostichopus japonicus. Environmental Toxicology and Pharmacology, 40 (2): 535–540, DOI: 10.1016/j.etap.2015.08.012.

    Article  Google Scholar 

  • Wu, S. B., and Wei, Y. H., 2012. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: Implication of the cell survival in mitochondrial diseases. Biochimica et Biophysica Acta, 1822 (2): 233–247, DOI: 10.1016/j.bbadis.2011.09.014.

    Article  Google Scholar 

  • Yusupova, L. B., 1989. Increasing the accuracy of determining the glutathione reductase activity of erythrocytes. Laboratornoe Delo, 4: 19–21 (in Russsian with English abstract).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Far Eastern Center of Electron Microscopy, National Scientific Center of Marine Biology, for facilities. They also thank anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila S. Dolmatova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolmatova, L.S., Dolmatov, I.Y. Lead Induces Different Responses of Two Subpopulations of Phagocytes in the Holothurian Eupentacta fraudatrix. J. Ocean Univ. China 17, 1391–1403 (2018). https://doi.org/10.1007/s11802-018-3795-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3795-0

Key words

Navigation