Skip to main content
Log in

Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Gracilariopsis lemaneiformis is an economically important agarophyte, which contains high quality gel and shows a high growth rate. Wild population of G. lemaneiformis displayed resident divergence, though with a low genetic diversity as was revealed by amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. In addition, different strains of G. lemaneiformis are diverse in morphology. The highly inconsistence between genetic background and physiological characteristics recommends strongly to the regulation at epigenetic level. In this study, the DNA methylation change in G. lemaneiformis among different generation branches and under different temperature stresses was assessed using methylation sensitive amplified polymorphism (MSAP) technique. It was shown that DNA methylation level among different generation branches was diverse. The full and total methylated DNA level was the lowest in the second generation branch and the highest in the third generation. The total methylation level was 61.11%, 60.88% and 64.12% at 15°C, 22°C and 26°C, respectively. Compared with the control group (22°C), the fully methylated and totally methylated ratios were increased in both experiment groups (15°C and 26°C). All of the cytosine methylation/demethylation transform (CMDT) was further analyzed. High temperature treatment could induce more CMDT than low temperature treatment did.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aina, R., Sgorbati, S., Santagostino, A., Labra, M., Ghiani, A., and Citterio, S., 2004. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 121 (3): 472–480.

    Article  Google Scholar 

  • Angers, B., Castonguay, E., and Massicotte, R., 2010. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Molecular Ecology, 19 (7): 1283–1295.

    Article  Google Scholar 

  • Bassam, B. J., Caetanoanollés, G., and Gresshoff, P. M., 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196 (1): 80–83.

    Article  Google Scholar 

  • Baurens, F. C., Bonnot, F., Bienvenu, D., Causse, S., and Legavre, T., 2012. Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Molecular Biology Reporter, 21 (4): 339–348.

    Article  Google Scholar 

  • Bender, J., 1998. Cytosine methylation of repeated sequences in eukaryotes: The role of DNA pairing. Trends in Biochemical Sciences, 23 (7): 252–256.

    Article  Google Scholar 

  • Boyko, A., and Kovalchuk, I., 2011. Genetic and epigenetic effects of plant-pathogen interactions: An evolutionary perspective. Molecular Plant, 4 (6): 1014–1023.

    Article  Google Scholar 

  • Chakrabarty, D., Yu, K. W., and Paek, K. Y., 2003. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Science, 165 (1): 61–68.

    Article  Google Scholar 

  • Chen, X., Ma, Y., Chen, F., Song, W., and Zhang, L., 2009. Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP. Plant Cell, Tissue and Organ Culture (PCTOC), 98 (1): 67–77.

    Article  Google Scholar 

  • Choi, C., S., and Sano, H., 2007. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics, 277 (5): 589–600.

    Article  Google Scholar 

  • Dhar, M. S., Pethe, V. V., Gupta, V. S., and Ranjekar, P. K., 1990. Predominance and tissue specificity of adenine methylation in rice. Theoretical and Applied Genetics, 80 (3): 402–408.

    Article  Google Scholar 

  • Ding, H. Y., Sui, Z. H., Zhong, J., Zhou, W., and Wang, Z. X., 2012. Analysis and comparison on genetic diversity of haploid and diploid Gracilaria lemaneiformis polulations from different places of Qingdao by AFLP. Periodical of Ocean University of China, 42: 99–105.

    Google Scholar 

  • Dyachenko, O. V., Zakharchenko, N. S., Shevchuk, T. V., Bohnert, H. J., Cushman, J. C., and Buryanov, Y. I., 2006. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry, 71 (4): 461–465.

    Google Scholar 

  • Fieldes, M. A., Schaeffer, S. M., Krech, M. J., and Brown, J. C. L., 2005. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theoretical and Applied Genetics, 111 (1): 136–149.

    Article  Google Scholar 

  • Finnegan, E. J., Lawrence, G. J., Dennis, E. S., and Ellis, J. G., 1993. Behaviour of modified Ac elements in flax callus and regenerated plants. Plant Molecular Biology, 22 (4): 625–633.

    Article  Google Scholar 

  • González-Leija, J. A., Hernández-Garibay, E., Pacheco-Ruíz, I., Guardado-Puentes, J., Espinoza-Avalos, J., López-Vivas, J. M., and Bautista-Alcantar, J., 2009. Optimization of the yield and quality of agar from Gracilariopsis lemaneiformis (Gracilariales) from the Gulf of California using an alkaline treatment. Journal of Applied Phycology, 21 (3): 321–326.

    Article  Google Scholar 

  • Iqbal, K., Jin, S. G., Pfeifer, G. P., and Szabó, P. E., 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences, 108 (9): 3642–3647.

    Article  Google Scholar 

  • Iwase, Y., Shiraya, T., and Takeno, K., 2010. Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiologia Plantarum, 139 (1): 118–127.

    Article  Google Scholar 

  • Kay, A., 2001. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Science, 161 (2): 359–367.

    Article  Google Scholar 

  • Kimatu, J. N., Diarso, M., Song, C., Agboola, R. S., Pang, J., Xin, Q., and Bao, L., 2011. DNA cytosine methylation alterations associated with aluminium toxicity and low pH in Sorghum bicolor. African Journal of Agricultural Research, 6 (19): 4579–4593.

    Google Scholar 

  • Lukens, L. N., and Zhan, S., 2007. The plant genome’s methylation status and response to stress: Implications for plant improvement. Current Opinion in Plant Biology, 10 (3): 317–322.

    Article  Google Scholar 

  • Lund, G., Messing, J., and Viotti, A., 1995. Endosperm-specific demethylation and activation of specific alleles of a-tubulin genes of Zea mays L. Molecular Genetics and Genomics, 246 (6): 716–722.

    Article  Google Scholar 

  • Ma, K., Zhang, Z., Wang, S., Song, Y., and Zhang, D., 2012. Optimization of MSAP system and preliminary analysis of DNA methylation in Populus tomentosa. Journal of Northeast Forestry University, 40 (12): 1–7.

    Google Scholar 

  • Mazumder, S., Ghosal, P. K., Pujol, C. A., Carlucci, M. A. J., Damonte, E. B., and Ray, B., 2003. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). International Journal of Biological Macromolecules, 31 (1): 87–95.

    Google Scholar 

  • Mcclelland, M., Nelson, M., and Raschke, E., 1994. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Research, 21 (13): 3139–3154.

    Google Scholar 

  • Melo, M. R. S., Feitosa, J. P. A., Freitas, A. L. P., and Paula, R. C. M. D., 2002. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers, 49 (4): 491–498.

    Article  Google Scholar 

  • Meng, F. R., Li, Y., Yin, J., Liu, H., Chen, X., Ni, Z. F., and Sun, Q. X., 2012. Analysis of DNA methylation during the germination of wheat seeds. Biologia Plantarum, 56 (2): 269–275.

    Article  Google Scholar 

  • Messeguer, R., Ganal, M. W., Steffens, J. C., and Tanksley, S. D., 1991. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology, 16 (5): 753–770.

    Article  Google Scholar 

  • Pang, Q., Sui, Z., Kang, K. H., Kong, F., and Zhang, X., 2010. Application of SSR and AFLP to the analysis of genetic diversity in Gracilariopsis lemaneiformis (Rhodophyta). Journal of Applied Phycology, 22 (5): 607–612.

    Article  Google Scholar 

  • Pflugmacher., and Steinberg., 1997. Activity of Phase I and Phase II detoxication enzymes in aquatic macrophytes. Journal of Applied Botany Angewandte Botanik, 71 (5-6): 144-146.

  • Portis, E., Acquadro, A., Comino, C., and Lanteri, S., 2004. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science, 166 (1): 169–178.

    Article  Google Scholar 

  • Qu, J, Q., Wang, X., Liu, C., Li, X. L., Zhang, X. L., and Liu, T., 2013. Preliminary analysis of DNA methylation of Saccharina japonica with MSAP. Periodical of Ocean University of China, 43 (10): 54–59.

    Google Scholar 

  • Ren, X. Y., Zhang, X. C., and Sui, Z. H., 2006. Identification of phase relative genes in tetrasporophytes and female gametophytes of Gracilaria/Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). Electronic Journal of Biotechnology, 9 (2): 127–132.

    Article  Google Scholar 

  • Reynalópez, G. E., Simpson, J., and Ruizherrera, J., 1997. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Molecular Genetics and Genomics, 253 (6): 703–710.

    Article  Google Scholar 

  • Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J., and Dellaporta, S. L., 1996. Demethylation-induced developmental pleiotropy in Arabidopsis. Science, 273 (5275): 654–657.

    Article  Google Scholar 

  • Santelices, B., and Doty, M. S., 1989. A review of Gracilaria farming. Aquaculture, 78 (2): 95–133.

    Article  Google Scholar 

  • Shan, X., Wang, X., Yang, G., Wu, Y., Su, S., Li, S., Liu, H., and Yuan, Y., 2013. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylationsensitive amplified polymorphisms. Journal of Plant Biology, 56 (1): 32–38.

    Article  Google Scholar 

  • Sui, Z., 2005. Study of the benthic marine algae on the Liaoning Huanghai and Bohai sea coasts. Transaction of Oceanology & Limnology, 2005 (3): 57–65.

    Google Scholar 

  • Tanaka, H., Masuta, C., Uehara, K., Kataoka, J., Koiwai, A., and Noma, M., 1997. Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-l-homocysteine hydrolase gene. Plant Molecular Biology, 35 (6): 981–986.

    Article  Google Scholar 

  • Vyskot, B., Koukalová, B., Kovarík, A., Sachambula, L., Reynolds, D., and Bezdek, M., 1995. Meiotic transmission of a hypomethylated repetitive DNA family in tobacco. Theoretical and Applied Genetics, 91 (4): 659–664.

    Article  Google Scholar 

  • Wang, J., Sui, Z., Hu, Y., Zhou, W., Wei, H., Du, Q., Niaz, Z., Peng, C., Mi, P., and Que, Z., 2016. Assessment of photosynthetic performance, carboxylase activities, and ATP content during tetrasporic development in Gracilariopsis lemaneiformis (Gracilariaceae, Rhodophyta). Journal of Applied Phycology, 28 (5): 1–14.

    Article  Google Scholar 

  • Wang, W. S., Pan, Y. J., Zhao, X. Q., Dwivedi, D., Zhu, L. H., Ali, J., Fu, B. Y., and Li, Z. K., 2011. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). Journal of Experimental Botany, 62 (6): 1951–1960.

    Article  Google Scholar 

  • Wang, Z., Sui, Z., Hu, Y. Y., Zhang, S., Pan, Y., and Ju, H. R., 2014. A comparison of different Gracilariopsis lemaneiformis (Rhodophyta) parts in biochemical characteristics, protoplast formation and regeneration. Journal of Ocean University of China, 13 (4): 671–676.

    Article  Google Scholar 

  • Wang, Z., Wang, G., Niu, J., Wang, W., and Peng, G., 2010. Optimization of conditions for tetraspore release and assessment of photosynthetic activities for different generation branches of Gracilaria lemaneiformis Bory. Chinese Journal of Oceanology and Limnology, 28 (4): 738–748.

    Article  Google Scholar 

  • Xiong, L. Z., Xu, C. G., Maroof, M. A. S., and Zhang, Q., 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular Genetics and Genomics, 261 (3): 439–446.

    Article  Google Scholar 

  • Xu, M. L., Li, X. Q., and Korban, S. S., 2000. AFLP-based detection of DNA methylation. Plant Molecular Biology Reporter, 18 (4): 361–368.

    Article  Google Scholar 

  • Ye, N., Wang, H., and Wang, G., 2006. Formation and early development of tetraspores of Gracilaria lemaneiformis (Gracilaria, Gracilariaceae) under laboratory conditions. Aquaculture, 254 (1): 219–226.

    Article  Google Scholar 

  • Yu, Y., Yang, X., Wang, H., Shi, F., Liu, Y., Liu, J., Liu, L., Wang, D., and Liu, B., 2013. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses. PLoS One, 8 (2): e55772.

    Article  Google Scholar 

  • Zhang, M., Kimatu, J, N., Xu, K., and Bao, L., 2010. DNA cytosine methylation in plant development. Journal of Genetics and Genomics, 37 (1): 1–12.

    Article  Google Scholar 

  • Zhang, X., and Fei, X., 2008. The varieties registered by Chinese Aquaculture Varieties Approving Committeee □ the cultivar 981 of Gp. lemaneiformis and its cultivation techniques. lemaneiformis and its cultivation techniques. Scientific Fish Farming, 6: 21–22.

    Google Scholar 

  • Zhang, X., Qin, S., Ma, J., and Xu, P., 2004. The Genetics of Marine Algae. Agricultural Press of China, Beijing, 335pp.

    Google Scholar 

  • Zhou, J., Gregurick, S. K., Krueger, S., and Schwarz, F. P., 2006. Conformational changes in Single-Strand DNA as a function of temperature by SANS. Biophysical Journal, 90 (2): 544–551.

    Article  Google Scholar 

  • Zhou, W., Hu, Y., Sui, Z., Fu, F., and Wang, J., Chang, L., Guo, W., and Li, B., 2013. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on Next-Generation sequencing. PLoS One, 8 (7): 374–374.

    Google Scholar 

  • Zou, D., Xia, J., and Yang, Y., 2004. Photosynthetic use of exogenous inorganic carbon in the agarophyte Gracilaria lemaneiformis (Rhodophyta). Aquaculture, 237 (1): 421–431.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31372529), the Fundamental Research Funds for the Central Universities (No. 201762016) and China Agriculture Research System (No. CARS-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Sui, Z., Zhou, W. et al. Analysis of DNA Methylation of Gracilariopsis lemaneiformis Under Temperature Stress Using the Methylation Sensitive Amplification Polymorphism (MSAP) Technique. J. Ocean Univ. China 17, 623–631 (2018). https://doi.org/10.1007/s11802-018-3426-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3426-9

Key words

Navigation