Skip to main content
Log in

Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa (2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, J-W., Wilczak, J. M., Choi, J-K., and Kantha, L. H., 2000. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Monthly Weather Review, 128: 2190–2210.

    Article  Google Scholar 

  • Bender, M. A., and Ginis, I., 2000. Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128: 917–946.

    Article  Google Scholar 

  • Bender, M. A., Ginis, I., and Kurihara, Y., 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. Journal of Geophysical Research, 98: 23245–23263.

    Article  Google Scholar 

  • Bender, M. A., Ginis, I., Tuleya, R., Thomas, B., and Marchok, T., 2007. The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance. Monthly Weather Review, 135: 3965–3989.

    Article  Google Scholar 

  • Bosart, L. F., Velden, C. S., Bracken, W. E., Molinari, J., and Black, P. G., 2000. Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Monthly Weather Review, 128: 322–352.

    Article  Google Scholar 

  • Chan, J., Duan, Y., and Shay, L., 2001. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. Journal of the Atmospheric Sciences, 58: 154–172.

    Article  Google Scholar 

  • Chen, S. S., Price, J. F., Zhao, W., Donelan, M. A., and Walsh, E. J., 2007. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bulletin of the American Meteorological Society, 88: 311–317.

    Article  Google Scholar 

  • Cione, J., and Uhlhorn, E., 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Monthly Weather Review, 131: 1783–1795.

    Article  Google Scholar 

  • Donelan, M. A., 1990. Air-sea interaction. In: The Sea. LeMehaute, B., and Hanes, D. M., eds. Wiley and Sons: Ocean Engineering Science, 9: 239–292.

    Google Scholar 

  • Doyle, J. D., 2002. Coupled atmosphere-ocean wave simulations under high wind conditions. Monthly Weather Review, 130: 3087–3099.

    Article  Google Scholar 

  • Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C., 2003. On the wave age dependence of wind stress over pure wind seas. Journal of Geophysical Research, 108, 8062 DOI: 10.1029/2000JC000715.

    Article  Google Scholar 

  • Emanuel, K., 1988. Toward a general theory of hurricanes. American Scientist, 76: 371–379.

    Google Scholar 

  • Fan, Y., Ginis, I., and Hara, T., 2009. The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. Journal of Physical Oceanography, 39: 1019–1034.

    Article  Google Scholar 

  • Flather, R. A., 1976. A tidal model of the north-west European continental shelf. Memoires de la Societe Royale des Sciences de Liege, 6(10): 141–164.

    Google Scholar 

  • Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and Wilkin, J., 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227: 3595–3624.

    Article  Google Scholar 

  • Holland, G. J., 1997. The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences. 54: 2519–2541.

    Article  Google Scholar 

  • Jacob, R., Larson, J., and Ong, E., 2005. M×N communication and parallel interpolation in CCSM using the model coupling toolkit. Preprint ANL/MCSP1225-0205. Mathematics and Computer Science Division, Argonne National Laboratory, 25pp.

    Google Scholar 

  • Johnson, H. K., Hojstrup, J., Vested, H. J., and Larsen, S. E., 1998. On the dependence of sea surface roughness on wind waves. Journal of Physical Oceanography, 28: 1702–1716.

    Article  Google Scholar 

  • Kumar, N., Voulgaris, G., Warner, J. C., and Olabarrieta, M., 2012. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modelling, 47: 65–95.

    Article  Google Scholar 

  • Larson, J., Jacob, R., and Ong, E., 2004. The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. Preprint ANL/MCSP1208-1204. Mathematics and Computer Science Division, Argonne National Laboratory, 25pp.

    Google Scholar 

  • Lin, I.-I., Wu, C.-C., Emanuel, K. A., Lee, I.-H., Wu, C.-R., and Pun, I.-F., 2005. The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Monthly Weather Review, 133: 2635–2649.

    Article  Google Scholar 

  • Liu, B., Liu, H., Xie, L., Guan, C., and Zhao, D., 2011. A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Monthly Weather Review, 139: 132–152.

    Article  Google Scholar 

  • Marks, F., and Shay, L. K., 1998. Landfalling tropical cyclones: Forecast problems and associated research opportunities: Report of the 5th prospectus development team to the US weather research program. Bulletin of the American Meteorological Society, 79: 305–323.

    Article  Google Scholar 

  • Olabarrieta, M., Warner, J. C., and Kumar, N., 2011. Wave-current interaction in Willapa Bay. Journal of Geophysical Research, 116, C12014 DOI: 10.1029/2011JC007387.

    Article  Google Scholar 

  • Olabarrieta, M., Warner, J. C., Armstrong, B., Zambon, J. B., and He, R., 2012. Ocean-atmosphere dynamics during hurricane Ida and Nor’Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system, Ocean Modelling, 43–44: 112–137.

    Article  Google Scholar 

  • Price, J. F., 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11: 153–175.

    Article  Google Scholar 

  • Price, J. F., Sanford, T., and Forristall, G., 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24: 233–260.

    Article  Google Scholar 

  • Schade, L. R., and Emanuel, K. A., 1999. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. Journal of the Atmospheric Sciences, 56: 642–651.

    Article  Google Scholar 

  • Shay, L., Goni, G., and Black, P., 2000. Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128: 1366–1383.

    Article  Google Scholar 

  • Shchepetkin, A. F., and McWilliams, J. C., 2005. The regional ocean modeling system: A split-explicit, free-surface, topography-following coordinates ocean model. Ocean Modelling, 9: 347–404.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G., 2005. A Description of the Advanced Research WRF Version 2. NCAR Technical Note, NCAR/TN-468+STR.

    Google Scholar 

  • von Storch, H., Langenberg, H., and Feser, F., 2000. A spectral nudging technique for spectral downscaling purposes. Monthly Weather Review, 128: 3664–3673.

    Article  Google Scholar 

  • Warner, J. C., Armstrong, B., He, R., and Zambon, J. B., 2010. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3): 230–244.

    Article  Google Scholar 

  • Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., and Arango, H. G., 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34: 1284–1306.

    Article  Google Scholar 

  • Xie, L., Liu, B., Liu, H., and Guan, C., 2009. Numerical simulation of tropical cyclone intensity using an air-sea-wave coupled prediction system. Advances in Geosciences, 18: 19–43.

    Google Scholar 

  • Xie. L., Liu, H., and Peng, M., 2008. The effect of wave-current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20: 252–269.

    Article  Google Scholar 

  • Xie, L., Wu, K., Pietrafesa, L., and Zhang, C., 2001. A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. Journal of Geophysical Research, 106: 16841–16855.

    Article  Google Scholar 

  • Zhu, H., Ulrich, W., and Smith, R., 2004. Ocean effects on tropical cyclone intensification and inner-core asymmetries. Journal of the Atmospheric Sciences, 61: 1245–1258.

    Article  Google Scholar 

  • Zhu, T., and Zhang, D., 2006. The impact of the storm-induced SST cooling on hurricane intensity. Advances in Atmospheric Sciences, 23(1): 14–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Ling, T., Wang, H. et al. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. J. Ocean Univ. China 14, 199–209 (2015). https://doi.org/10.1007/s11802-015-2415-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2415-5

Key words

Navigation