Skip to main content
Log in

The impact of the storm-induced SST cooling on hurricane intensity

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3°C, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1°C change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190–2210.

    Google Scholar 

  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23245–23263.

    Google Scholar 

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946.

    Google Scholar 

  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961.

    Google Scholar 

  • Businger, J. A., 1982: Equations and concepts. Atmospheric Turbulence and Air Pollution Modeling, F. T. M. Nieuwstadt and H. van Dop, Eds., Reidel, Dordrecht, 1–36.

    Google Scholar 

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.

    Article  Google Scholar 

  • Chang, S. W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128–135.

    Article  Google Scholar 

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–940.

    Google Scholar 

  • Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27, 1239–1242.

    Article  Google Scholar 

  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550–1561.

    Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.

    Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.

    Google Scholar 

  • Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371–379.

    Google Scholar 

  • Emanuel, K. A., 1991: The theory of hurricanes. Annual Review of Fluid Mechanics, 23, 179–196.

    Article  Google Scholar 

  • Fisher, E. L., 1958: Hurricane and the sea surface temperature field. J. Meteor., 15, 328–333.

    Google Scholar 

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316pp.

  • Grell, G. A., J.Dudhia, and D. R.Stauffer, 1995: A description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech Note NCAR/TN-398+STR, 138pp. [Available from NCAR Publications Office, P. O. Box 3000, Boulder, CO 80307-3000.]

  • Holland, G. J., 1997: Maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.

    Article  Google Scholar 

  • Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 1347–1365.

    Google Scholar 

  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3-D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 1407–1429.

    Article  Google Scholar 

  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464–482.

    Article  Google Scholar 

  • Leipper, D., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182–196.

    Article  Google Scholar 

  • Liu, Y., D.-L. Zhang and M.K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616.

    Google Scholar 

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.

    Article  Google Scholar 

  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.

    Google Scholar 

  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917–925.

    Article  Google Scholar 

  • Sakaida, F., H. Kawamura, and Y. Toba, 1998: Sea surface cooling caused by typhoons in the Tohuku area in August 1989. J. Geophys. Res., 103 (C1), 1053–1065.

    Article  Google Scholar 

  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmospheric-ocean model. J. Atmos. Sci., 56, 642–651.

    Article  Google Scholar 

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467–15472.

    Google Scholar 

  • Sutyrin, G. G., and A. P. Khain, 1984: Effect of the ocean-atmosphere interaction on the intensity of a moving tropical cyclone. Atmospheric and Oceanic Physics, 20, 787–794.

    Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35–72.

    Google Scholar 

  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model—TCM3. Part I: Description of the model and control experiment. Mon. Wea. Rev., 129, 1270–1294.

    Google Scholar 

  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 1999: Surface winds at landfall of Hurricane Andrew (1992)—A reply. Mon. Wea. Rev., 127, 1711–1721.

    Google Scholar 

  • Zhu, Tong, D.-L. Zhang, and F. Weng, 2002: Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon. Wea. Rev., 130, 2416–2432.

    Google Scholar 

  • Zhu, Tong, D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, T., Zhang, DL. The impact of the storm-induced SST cooling on hurricane intensity. Adv. Atmos. Sci. 23, 14–22 (2006). https://doi.org/10.1007/s00376-006-0002-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-006-0002-9

Key words

Navigation