Skip to main content
Log in

Er3+-activated silica inverse opals synthesized by the solgel method

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We present the details of the sol-gel processing used to realize inverse silica opal, where the silica was activated with 0.3 mol% of Er3+ ions. The template (direct opal) was obtained assembling polystyrene spheres of the dimensions of 260 nm by means of a vertical deposition technique. The Er3+-activated silica inverse opal was obtained infiltrating, into the void of the template, the silica sol doped with Er3+ ions and subsequently removing the polystyrene spheres by means of calcinations. Scanning electron microscope showed that the inverse opals possess a fcc structure with a air hollows of about 210 nm and a photonic band gap, in the visible range, was observed from reflectance measurements. Spectroscopic properties of Er3+-activated silica inverse opal were investigated by luminescence spectroscopy, where, upon excitation at 514.5 nm, an emission of 4I13/24I15/2 of Er3+ ions transition with a 21 nm bandwidth was observed. Moreover the 4I13/2 level decay curve presents a single-exponential profile, with a measured lifetime of 18 ms, corresponding a high quantum efficiency of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Yang, H. Mìguez, and G. A. Ozin, Funct. Mater., 12 (2002), 425.

    Article  Google Scholar 

  2. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, Adv. Mater., 13 (2001), 1469.

    Google Scholar 

  3. A. Chiappini, C. Armellini, S.N.B. Bhaktha, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, and V. M. Sglavo, SPIE, 6182 (2006), 454.

    Google Scholar 

  4. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, Science, 282 (1998), 897.

    Article  ADS  Google Scholar 

  5. Y.-H. Ye, F. LeBlanc, A. Hache’, and V.-V. Truong, Appl. Phys. Lett., 78 (2001), 52.

    Article  ADS  Google Scholar 

  6. M. Loncar, T Yoshie, A. Scherer, P. Gogna, and Y.M. Qiu, Appl. Phys. Lett., 81 (2002), 2680.

    Article  ADS  Google Scholar 

  7. H. Ichikawa and T. Baba, Appl. Phys. Lett., 84 (2004), 457.

    Article  ADS  Google Scholar 

  8. M.A.R.C. Alencar, G. S. Maciel, C. B. de Araujo, R. Bertholdo, Y. Messaddeq, and S. J.L. Ribeiro, J. Non Crystal. Solids, 351 (2005), 1846.

    Article  Google Scholar 

  9. J. Zhou, R. Zong, M. Fu, and L. Li, J. Am. Ceram. Soc., 89 (2006), 2308.

    Google Scholar 

  10. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature, 430 (2004), 654.

    Article  ADS  Google Scholar 

  11. S. Jeon, and P. V. Braun, Chem. Mat., 15 (2003), 1256.

    Article  Google Scholar 

  12. Y. Liu, X. Xu, D. Zhang, B. Cheng, and D. Zhang, Appl. Phys. Lett., 86 (2005), 151102.

  13. L. K. Teh, K. H. Yeo, and C.C. Wong, Appl. Phys. Lett., 89 (2006), 051105-1.

    Google Scholar 

  14. A. Richel, N. P. Johnson, and D. W. McComb, Appl. Phys. Lett., 76 (2000), 1816.

    Article  ADS  Google Scholar 

  15. G. Ghosh, J. Am. Ceram. Soc., 78 (1995), 2828.

    Article  Google Scholar 

  16. S.N.B. Bhaktha, B. Boulard, S. Chaussedent, A. Chiappini, A. Chiasera, E. Duval, C. Duverger, S. Etienne, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, A. Monteil, E. Moser, H. Portales, and K.C. Vishunubhatla, Opt. Mat., 28 (2006), 1325.

    Article  ADS  Google Scholar 

  17. W.J. Miniscalco, J. of Light. Tech., 9 (1991), 234.

    Article  ADS  Google Scholar 

  18. M.J.A de Dood, L.H. Slooff, A. Polman, A. Moroz, and A van Blaaderen, Appl. Phys. Lett., 79 (2001), 3585.

    Article  ADS  Google Scholar 

  19. M.J.A. de Dood, L.H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, Phy. Rev. A, 64 (2001), 033807-1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work has been supported by the MIUR-FIRB RBNE012N3X, MIUR PRIN, PAT FAPVU 2004–2006, GRICES-CNR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiappini, A., Armellini, C., Chiasera, A. et al. Er3+-activated silica inverse opals synthesized by the solgel method. Optoelectron. Lett. 3, 184–187 (2007). https://doi.org/10.1007/s11801-007-6194-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-007-6194-0

CLC numbers

Navigation