Skip to main content
Log in

Nanospherical Silica as Luminescent Markers Obtained by Sol–Gel

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Hybrid nanosilicas constitute a broad study field. They find application as catalysts, pigments, drug delivery systems, and biomaterials, among others, and it is possible to obtain them via the sol–gel methodology. Lanthanide ions present special properties like light emission. Their incorporation into a silica matrix can enhance their luminescent properties, which enables their application as luminescent markers. This work reports on (i) the preparation of luminescent spherical hybrid silica nanoparticles by the hydrolytic sol–gel methodology, (ii) doping of the resulting matrix with the europium(III) ion or its complex with 1,10-phenanthroline, and (iii) characterization of the final powders by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and europium(III) ion photoluminescence. The synthesized materials consisted of hybrid, amorphous, polydispersed nonspherical silicas with average size of 180 nm. Photoluminescence confirmed incorporation of the europium(III) ion and its complex into the silica matrix—the ligand-metal charge transfer band emerged in the excitation spectra. The emission spectra presented the bands corresponding to the transition of the excited state 5D0 level to 7FJ (J = 0, 1, 2, 3 and 4). The main emission occurred in the red region; the lifetime was long. These characteristics indicated that the prepared nanospherical hybrid silicas could act as luminescent markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C (2013) Molecular engineering of funtional inorganic and hybrid materials. Chem Mater 1–20

  2. José NM, Prado LASA (2005) Materiais Híbridos Orgânicos-Inorgânicos: preparação e Algumas Aplicações. Quim Nova 28:281–288

    Article  Google Scholar 

  3. Sanchez C, Bellevillec P, Popalld M, Nicoleab L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) Chimie douce: a land of opportunities for the designed construction of functional inorganic and hybrid organic–inorganic nanomaterials. C R Chim 13:3–39

    Article  CAS  Google Scholar 

  5. Schimidt H, Krug H (1994) Sol–gel based inorganic–organic composites materials In: Neilsen PW, Allcok HR, Wynne KJ (Ed.). Inorganic and organometallic polymers II. Washington, D. C.: American Chemical Society 15:183–194.

  6. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  7. Sanchez C, François R (1994) Design of hybrid organic–inorganic materials synthesized via solgel chemistry. New J Chem 18:1007–1047

    CAS  Google Scholar 

  8. Park M, Komarneni S (1998) Effect of substituted alkyl groups on textural properties of ORMOSILs. J Mater Sci 33:3817–3821

    Article  CAS  Google Scholar 

  9. del Monte F, Cheben P, Grover CP, Mackenzie JD. (1999) Preparation and Optical Characterization of Thick-Film Zirconia and Titania Ormosils. J Sol–Gel Sci Technol. 15:73–85.

  10. Altman JC, Stone RE, Dunn B, Nishida F (1991) Solid-state laser using a Rhodamine-doped silica-gel compound. IEEE Photon Technol Lett 3:189–190

    Article  Google Scholar 

  11. Wojcik AB, Klein LC (1995) Transparent Inorganic/Organic Copolymers by the Sol–Gel Process: Copolymers of Tetraethyl Orthosilicate (TEOS), Vinyl Triethoxysilane (VTES) and (Meth)acrylate Monomers. J Sol–Gel Sci Technol 4:57–66

    Article  CAS  Google Scholar 

  12. Reisfeld R, Gvishi R, Burshtein Z (1995) Photostability and loss mechanism of solid-state red perylimide dye lasers. J Sol–Gel Sci Technol 4:49–55

    Article  CAS  Google Scholar 

  13. Gvishi R (2009) Fast sol–gel technology: from fabrication to applications. J Sol–Gel Sci Technol 50:241–253

    Article  CAS  Google Scholar 

  14. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects. Biosens Bioelectron 22:2387–2399

    Article  CAS  PubMed  Google Scholar 

  15. Ibrahima WAW, Veloo KV, Sanagia MM (2012) Novel sol–gel hybrid methyltrimethoxysilane–tetraethoxysilane as solid phase extraction sorbent for organophosphorus pesticides. J. Chromatogr A 1229:55–62

    Article  Google Scholar 

  16. Nadargi DY, Kalesh RR, Rao AV (2009) Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. J Alloys Compd 480:689–695

    Article  CAS  Google Scholar 

  17. Gvishi R, Strum G, Shitrit N, Dror R (2008) Optical waveguide fabrication using a fast sol–gel method. Opt Mater 30:1755–1758

    Article  CAS  Google Scholar 

  18. Morpurgo M, Teoli D, Palazzo B, Bergamin E, Realdon N, Guglielmi M (2005) Influence of synthesis and processing conditions on the release behavior and stability of sol–gel derived silica xerogels embedded with bioactive compounds. Il Farmaco 60:675–683

    Article  CAS  PubMed  Google Scholar 

  19. Azevedo CB, Souza EA, Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ (2013) Optical properties of Eu-doped hybrid materials prepared from dimethyl and methyl alkoxides precursors. J Lumin 134:551–557

    Article  CAS  Google Scholar 

  20. Avila LR, Nassor ECO, Pereira PFS, Cestari A, Ciuffi KJ, Calefi PS, Nassar EJ (2008) Preparation and properties of europium-doped phosphosilicate glasses obtained by the sol–gel method. J Non-Cryst Solids 354:4806–4810

    Article  CAS  Google Scholar 

  21. Nassor ECO, Ávila LR, Pereira PFS, Ciuffi KJ, Calefi PS, Nassar EJ (2011) Influence of the hydrolysis and condensation time on the preparation of hybrid materials. Mater Res 14:1–6

    Article  CAS  Google Scholar 

  22. Nassar EJ, Messaddeq Y, Ribeiro SJL (2002) Influência da catálise ácida e básica na preparação da sílica funcionalizada pelo método sol–gel. Quim Nova 25:27–31

    Article  CAS  Google Scholar 

  23. Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    Article  CAS  PubMed  Google Scholar 

  24. Knopp D, Tang D, Niessner R (2009) Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30

    Article  CAS  PubMed  Google Scholar 

  25. Cháfer-Pericás C, Maquieira A, Puchades R (2012) Functionalized inorganic nanoparticles used as labels in solid-phase immunoassays. Trends Anal Chem 31:144–156

    Article  Google Scholar 

  26. Cummins CM, Koivunen ME, Stephanian A, Geeb SJ, Hammock BD, Kennedy IM (2006) Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide. Biosens Bioelectron 21:1077–1085

    Article  CAS  PubMed  Google Scholar 

  27. Diamandis EP (1988) Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21:139–150

    Article  CAS  PubMed  Google Scholar 

  28. Martins TS, Isolani PC (2005) Terras raras: aplicações industriais e biológicas. Quim Nova 28:111–117

    Article  CAS  Google Scholar 

  29. Wu X, Wu M, Zhao JX (2013) Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanotechnology, Biology, and Medicine, Nanomedicine. doi:10.1016/j.nano.2013.08.008

    Google Scholar 

  30. Lourenço AVS, Kodaira CA, Ramos-Sanchez EM, Felinto MCFC, Goto H, Gidlund M, Malta OL, Brito HF (2013) Luminescent material based on the [Eu(TTA)3(H2O)2] complex incorporated into modified silica particles for biological applications. J Inorg Biochem 123:11–17

    Article  PubMed  Google Scholar 

  31. Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154

    Article  CAS  PubMed  Google Scholar 

  32. Sousa FJ, de Lima GPA, Pereira PFS, Ávila LR, Ciuffi KJ, Nassar EJ, Calefi PS (2010) Incorporation of luminescent complex into nanoparticles and films obtained by the sol–gel methodology. Mater Res 13:71–75

    Article  Google Scholar 

  33. Ribeiro TJ, de Lima OJ, de Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ (2014) Calcium phosphate as precursors of hydroxyapatite. An Acad Bras Cienc 86:217–226

    Article  Google Scholar 

  34. Al-Harbi T, Al-Hazmi F, Mahmoud WE (2012) Synthesis and characterization of nanoporous silica film via non-surfactant template sol–gel technique. Superlattice Microst 52:643–647

    Article  CAS  Google Scholar 

  35. Wang X-D, Shen Z-X, Sang T, Cheng X-B, Li M-F, Chen L-Y, Wang Z-S (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341:23–29

    Article  CAS  PubMed  Google Scholar 

  36. Takeda Y, Komori Y, Yoshitake H (2013) Direct Stöber synthesis of monodisperse silica particles functionalized with mercapto-, vinyl- and aminopropylsilanes in alcohol–water mixed solvents. Colloids Surf A Physicochem Eng Asp 422:68–74

    Article  CAS  Google Scholar 

  37. Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi M (1982) Raman and infrared spectra on silical-gel evolving toward glass. J Non-Cryst Solids 48:117–128

    Article  CAS  Google Scholar 

  38. Duran A, Navarro JMF, Casariego P, Joglar A (1986) Structural considerations about SiO2 glasses prepared by sol–gel. J Non-Cryst Solids 82:69–77

    Article  CAS  Google Scholar 

  39. Nassar EJ, Neri CR, Calefi PS, Serra OA (1999) Functionalized silica sinthesized by sol–gel process. J Non-Cryst Solids 247:124–128

    Article  CAS  Google Scholar 

  40. Sheng K, Yan B (2009) Coordination bonding assembly and photophysical properties of Europium organic/inorganic/polymeric hybrid materials. J Photochem Photobiol A Chem 206:140–147

    Article  CAS  Google Scholar 

  41. Liu D, Shi Q, Wang Z (2012) Color-tunable heat-resistant polyaryletherketones co-coordinated with various rare earth ions. Opt Mater 34:1815–1821

    Article  CAS  Google Scholar 

  42. Cunjin X (2010) Photophysical properties of a new ternary europium complex with 2-thenoyltrifluoroacetone and 5-nitro-1,10-phenanthroline. J Rare Earths 28:854–857

    Article  Google Scholar 

  43. Serra OA, Nassar EJ, Zapparolli G, Rosa ILV (1994) Organic complexes of Eu III supported in functionalyzed silica gel: highly luminescent materials. J Alloys Compd 207–208:454–456

    Article  Google Scholar 

  44. Matos MG, de Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ, Sarmento VHV (2014) Synthesis and photoluminescent properties of yttrium vanadate phosphor prepared by the non-hydrolytic sol–gel process. J Lumin 147:190–195

    Article  CAS  Google Scholar 

  45. Dutra JDL, Bispo TD, Freire RO (2014) LUMPAC Lanthanide Luminescence Software: efficient and user friendly. J Comput Chem 35:772–775

    Article  CAS  Google Scholar 

  46. Mesquita ME, Silva FRG, Albuquerque RQ, Freire RO, Conceição EC, da Silva JEC, Júnior NBC, Sá GF (2004) Eu(III) and Gd(III) complexes with pirazyne-2-carboxylic acid: luminescence and modelling of the structure and energy transfer process. J Alloys Compd 366:124–131

    Article  Google Scholar 

  47. Souza AP, Rodrigues LCV, Brito HF, Alves Jr S, Malta OL (2010) Photoluminescence study of new lanthanide complexes with benzene seleninic acids. J Lumin 130:181–189

    Article  CAS  Google Scholar 

  48. da Silva AA, Davolos MR (2011) Determination of the local site occupancy of Eu3+ ions in ZnAl2O4 nanocrystalline powders. Opt Mater 33:1226–1233

    Article  CAS  Google Scholar 

  49. Jorgensen CK, Reisfeld R (1983) Judd-Ofelt parameters and chemical bonding. J Less-Common Met 93:107–112

    Article  Google Scholar 

  50. Nassar EJ, Pereira PFS, de Oliveira Nassor EC, Ávila LR, Ciuffi KJ, Calefi PS (2007) Nonhydrolytic sol–gel synthesis and characterization of YAG. J Mater Sci 42:2244–2249

    Article  CAS  Google Scholar 

  51. Babu AB, Jamalaiah BC, Suhasini T, Rao TS, Moorthy LR (2011) Optical properties of Eu3+ ions in lead tungstate tellurite glasses. Solid State Sci 13:574–578

    Article  CAS  Google Scholar 

  52. Lima PP, Malta OL, Alves Jr S (2005) Estudo Espectroscópico de Complexos de Eu3+, Tb3+ e Gd3+ com Ligantes Derivados de Ácidos Dipicolínicos. Quim Nova 28:805–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Brazilian research funding agencies CNPq, CAPES, and (grant 2011/15199–1 C.B.A; 2011/09823–4 and 2012/11673–3 E.J.N.) São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo J. Nassar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, C.B., Batista, T., de Faria, E.H. et al. Nanospherical Silica as Luminescent Markers Obtained by Sol–Gel. J Fluoresc 25, 433–440 (2015). https://doi.org/10.1007/s10895-015-1530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1530-4

Keywords

Navigation