Skip to main content
Log in

An analysis of nonlocal difference equations with finite convolution coefficients

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Existence of at least one positive solution to the second-order nonlocal difference equation

$$\begin{aligned} -A\Big (\big (a*(g\circ u)\big )(b)\Big )\big (\Delta ^2u\big )(n)=\lambda f\big (n,u(n+1)\big ), \end{aligned}$$

where \((a*u)(b)\) represents a finite convolution and \(g\circ u\) denotes the composition of the functions g and u, is considered subject to Dirichlet boundary conditions. Since we use a specially tailored order cone, we are able to introduce minimal conditions on the coefficient function A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afrouzi, G.A., Chung, N.T., Shakeri, S.: Existence and non-existence results for nonlocal elliptic systems via sub-supersolution method. Funkcial. Ekvac. 59, 303–313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alizadeh, S., Baleanu, D., Rezapour, S.: Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative. Adv. Differ. Equ., Paper No. 55 (2020)

  3. Alves, C.O., Corrêa, F.J.S.A.: A sub-supersolution approach for a quasilinear Kirchhoff equation. J. Math. Phys. 56, 051501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Covei, D.-P.: Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method. Nonlinear Anal. Real World Appl. 23, 1–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosetti, A., Arcoya, D.: Positive solutions of elliptic Kirchhoff equations. Adv. Nonlinear Stud. 17, 3–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, D.R., Avery, R.I., Henderson, J., Liu, X., Lyons, J.W.: Existence of a positive solution for a right focal discrete boundary value problem. J. Differ. Equ. Appl. 17, 1635–1642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atici, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, 165–176 (2007)

    MathSciNet  Google Scholar 

  8. Atici, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., Special Edition I (2009)

  9. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atici, F.M., Eloe, P.W.: Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 17, 445–456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Atici, F.M., Atici, M., Belcher, M., Marshall, D.: A new approach for modeling with discrete fractional equations. Fund. Inform. 151, 313–324 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Atici, F.M., Atici, M., Nguyen, N., Zhoroev, T., Koch, G.: A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects. Comput. Math. Biophys. 7, 10–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Atici, F.M., Nguyen, N., Dadashova, K., Pedersen, S., Koch, G.: Pharmacokinetics and pharmacodynamics models of tumor growth and anticancer effects in discrete time. Comput. Math. Biophys. 8, 114–125 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Atici, F.M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Azzouz, N., Bensedik, A.: Existence results for an elliptic equation of Kirchhoff-type with changing sign data. Funkcial. Ekvac. 55, 55–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser (2001). https://doi.org/10.1007/978-1-4612-0201-1

  17. Bouizem, Y., Boulaaras, S., Djebbar, B.: Some existence results for an elliptic equation of Kirchhoff-type with changing sign data and a logarithmic nonlinearity. Math. Methods Appl. Sci. 42, 2465–2474 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boulaaras, S.: Existence of positive solutions for a new class of Kirchhoff parabolic systems. Rocky Mt. J. Math. 50, 445–454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boulaaras, S., Bouizem, Y., Guefaifia, R.: Further results of existence of positive solutions of elliptic Kirchhoff equation with general nonlinearity of source terms. Math. Methods Appl. Sci. 43, 9195–9205 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boulaaras, S., Guefaifia, R.: Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters. Math. Methods Appl. Sci. 41, 5203–5210 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boulaaras, S., Guefaifia, R., Cherif, B., Radwan, T.: Existence result for a Kirchhoff elliptic system involving \(p\)-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods. AIMS Math. 6, 2315–2329 (2021)

    Article  MathSciNet  Google Scholar 

  22. Cao, X., Dai, G.: Spectrum, global bifurcation and nodal solutions to Kirchhoff-type equations. Electron. J. Differ. Equ., Paper No. 179 (2018)

  23. Chung, N.T.: Existence of positive solutions for a class of Kirchhoff type systems involving critical exponents. Filomat 33, 267–280 (2019)

    Article  MathSciNet  Google Scholar 

  24. Cianciaruso, F., Infante, G., Pietramala, P.: Solutions of perturbed Hammerstein integral equations with applications. Nonlinear Anal. Real World Appl. 33, 317–347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Corrêa, F.J.S.A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59, 1147–1155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Corrêa, F.J.S.A., Menezes, S.D.B., Ferreira, J.: On a class of problems involving a nonlocal operator. Appl. Math. Comput. 147, 475–489 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Dahal, R., Duncan, D., Goodrich, C.S.: Systems of semipositone discrete fractional boundary value problems. J. Differ. Equ. Appl. 20, 473–491 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Delgado, M., Morales-Rodrigo, C., Santos Júnior, J.R., Suárez, A.: Non-local degenerate diffusion coefficients break down the components of positive solution. Adv. Nonlinear Stud. 20, 19–30 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. do Ó, J.M., Lorca, S., Sánchez, J., Ubilla, P.: Positive solutions for some nonlocal and nonvariational elliptic systems. Complex Var. Ellipt. Equ. 61, 297–314 (2016)

  30. Erbe, L., Peterson, A.: Positive solutions for a nonlinear differential equation on a measure chain. Math. Comput. Model. 32, 571–585 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erbe, L., Peterson, A.: Eigenvalue conditions and positive solutions. J. Differ. Equ. Appl. 6, 165–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Goodrich, C.S.: On a fractional boundary value problem with fractional boundary conditions. Appl. Math. Lett. 25, 1101–1105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Goodrich, C.S.: Coercivity of linear functionals on finite dimensional spaces and its application to discrete BVPs. J. Differ. Equ. Appl. 22, 623–636 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Goodrich, C.S.: Coercive nonlocal elements in fractional differential equations. Positivity 21, 377–394 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Goodrich, C.S.: Pointwise conditions in discrete boundary value problems with nonlocal boundary conditions. Appl. Math. Lett. 67, 7–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Goodrich, C.S.: New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function. J. Differ. Equ. 264, 236–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Goodrich, C.S.: Radially symmetric solutions of elliptic PDEs with uniformly negative weight. Ann. Mat. Pura Appl. (4) 197, 1585–1611 (2018)

  38. Goodrich, C.S.: A topological approach to nonlocal elliptic partial differential equations on an annulus. Math. Nachr. 294, 286–309 (2021)

    Article  MathSciNet  Google Scholar 

  39. Goodrich, C.S.: A topological approach to a class of one-dimensional Kirchhoff equations. Proc. Am. Math. Soc. Ser. B 8, 158–172 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Goodrich, C.S.: Nonlocal differential equations with concave coefficients of convolution type. Nonlinear Anal. 211, 112437 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Goodrich, C.S.: Differential equations with multiple sign changing convolution coefficients. Int. J. Math. 32, 2150057 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Goodrich, C.S.: Nonlocal differential equations with convolution coefficients and applications to fractional calculus. Adv. Nonlinear Stud. 21(4), 767–787 (2021)

  43. Goodrich, C.S., Lizama, C.: A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Isr. J. Math. 236, 533–589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Goodrich, C.S., Lizama, C.: Positivity, monotonicity, and convexity for convolution operators. Discrete Contin. Dyn. Syst. Ser. A 40, 4961–4983 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Goodrich, C.S., Lizama, C.: Existence and monotonicity of nonlocal boundary value problems: the one-dimensional case. Proc. R. Soc. Edinb. Sect. A. https://doi.org/10.1017/prm.2020.90

  46. Goodrich, C.S., Lyons, B.: Nonlocal difference equations with sign-changing coefficients. Appl. Math. Lett. 106, 106371 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Goodrich, C.S., Lyons, B., Velcsov, M.T.: Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Commun. Pure Appl. Anal. 20, 339–358 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-25562-0

  49. Graef, J., Kong, L., Wang, H.: A periodic boundary value problem with vanishing Green’s function. Appl. Math. Lett. 21, 176–180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Graef, J., Heidarkhani, S., Kong, L.: A variational approach to a Kirchhoff-type problem involving two parameters. Results Math. 63, 877–889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Granas, A., Dugundji, J.: Fixed Point Theory, Springer Monographs in Mathematics. Springer, New York (2003)

  52. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, Boston (1988)

    MATH  Google Scholar 

  53. Heidarkhani, S., Afrouzi, G.A., Henderson, J., Moradi, S., Caristi, G.: Variational approaches to \(p\)-Laplacian discrete problems of Kirchhoff-type. J. Differ. Equ. Appl. 23, 917–938 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Heidarkhani, S., Caristi, G., Salari, A.: Perturbed Kirchhoff-type \(p\)-Laplacian discrete problems. Collect. Math. 68, 401–418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Henderson, J., Liu, X., Lyons, J.W., Neugebauer, J.T.: Right focal boundary value problems for difference equations. Opuscula Math. 30, 447–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete Contin. Dyn. Syst. Ser. S 1, 99–106 (2008)

    MathSciNet  MATH  Google Scholar 

  57. Infante, G.: Nonzero positive solutions of nonlocal elliptic systems with functional BCs. J. Ellipt. Parabol. Equ. 5, 493–505 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Infante, G.: Eigenvalues of elliptic functional differential systems via a Birkhoff–Kellogg type theorem. Mathematics 9, 4 (2021)

    Article  Google Scholar 

  59. Infante, G., Pietramala, P., Tenuta, M.: Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory. Commun. Nonlinear Sci. Numer. Simul. 19, 2245–2251 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kone, B., Nyanquini, I., Ouaro, S.: Weak solutions to discrete nonlinear two-point boundary value problems of Kirchhoff type. Electron. J. Differ. Equ., No. 105 (2015)

  61. Lan, K.Q.: Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems. Appl. Math. Comput. 154, 531–542 (2004)

    MathSciNet  MATH  Google Scholar 

  62. Liu, F., Luo, H., Dai, G.: Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations. Electron. J. Qual. Theory Diff. Equ., Paper No. 29 (2020)

  63. Lizama, C., Murillo-Arcila, M.: Well posedness for semidiscrete fractional Cauchy problems with finite delay. J. Comput. Appl. Math. 339, 356–366 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ma, R., Zhong, C.: Existence of positive solutions for integral equations with vanishing kernels. Commun. Appl. Anal. 15, 529–538 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Sanou, R., Ibrango, I., Koné, B., Guiro, A.: Weak solutions to Neumann discrete nonlinear system of Kirchhoff type. CUBO 21, 75–91 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. Santos Júnior, J.R., Siciliano, G.: Positive solutions for a Kirchhoff problem with a vanishing nonlocal element. J. Differ. Equ. 265, 2034–2043 (2018)

  67. Stańczy, R.: Nonlocal elliptic equations. Nonlinear Anal. 47, 3579–3584 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wang, Y., Wang, F., An, Y.: Existence and multiplicity of positive solutions for a nonlocal differential equation. Bound. Value Probl. 2011, 5 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Webb, J.R.L.: Boundary value problems with vanishing Green’s function. Commun. Appl. Anal. 13, 587–595 (2009)

    MathSciNet  MATH  Google Scholar 

  70. Wong, P.J.Y.: Positive solutions of difference equations with two-point right focal boundary conditions. J. Math. Anal. Appl. 224, 34–58 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wu, G., Baleanu, D., Bai, Y.: Discrete fractional masks and their applications to image enhancement, Handbook of Fractional Calculus with Applications, vol. 8, pp. 261–270. De Gruyter, Berlin (2019)

  72. Yan, B., Ma, T.: The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems. Bound. Value Probl. 2016, 165 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. Yan, B., Wang, D.: The multiplicity of positive solutions for a class of nonlocal elliptic problem. J. Math. Anal. Appl. 442, 72–102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems. Springer, New York (1986)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Goodrich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodrich, C.S. An analysis of nonlocal difference equations with finite convolution coefficients. J. Fixed Point Theory Appl. 24, 1 (2022). https://doi.org/10.1007/s11784-021-00914-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-021-00914-9

Keywords

Mathematics Subject Classification

Navigation