Skip to main content
Log in

Coercive nonlocal elements in fractional differential equations

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

We consider the fractional boundary problem

$$\begin{aligned} -\left[ D_{0^+}^{\nu }y\right] (t)= & {} \lambda f\big (t,y(t)\big )\text {, }0<t<1\\ y^{(i)}(0)= & {} 0\text {, }0\le i\le n-2\\ \left[ D_{0^+}^{\alpha }y\right] (1)= & {} H\big (\varphi (y)\big ),\nonumber \end{aligned}$$

where \(n\in \mathbb {N}_4\), \(n-1<\nu \le n\), \(\alpha \in [1,n-2]\), and \(\lambda >0\) is a parameter. Here the element \(\varphi \) is a linear functional that represents a nonlocal boundary condition. We show that by introducing a new order cone, we can ensure that this functional is coercive, which is of importance in proving existence results for the above boundary value problem under minimal assumptions on the functions f and H. We also develop a new open set attendant to the cone. By means of examples we investigate both the usefulness of the new set as well as the strength of the coercivity condition and its dependence on the order, \(\nu \), of the fractional derivative. Finally, the methods we develop are applicable to a range of fractional-order boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, B., Agarwal, R.: Some new versions of fractional boundary value problems with slit-strips conditions, Bound. Value Probl. 12, Article 175 (2014)

  2. Ahmad, B., Nieto, J.J.: A class of differential equations of fractional order with multi-point boundary conditions. Georgian Math. J. 21, 243–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.R.: Existence of three solutions for a first-order problem with nonlinear nonlocal boundary conditions. J. Math. Anal. Appl. 408, 318–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabada, A., Fialho, J., Minhós, F.: Extremal solutions to fourth order discontinuous functional boundary value problems. Math. Nachr. 286, 1744–1751 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabada, A., Cid, J.A., Infante, G.: A positive fixed point theorem with applications to systems of Hammerstein integral equations, Bound. Value Probl. 10, Article 254 (2014)

  7. Ding, X., Feng, Y., Bu, R.: Existence, nonexistence and multiplicity of positive solutions for nonlinear fractional differential equations. J. Appl. Math. Comput. 40, 371–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Foukrach, D., Toufik, M., Ntouyas, S.K.: Existence and uniqueness results for a class of BVPs for nonlinear fractional differential equations. Georgian Math. J. 22, 45–55 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodrich, C.S.: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23, 1050–1055 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodrich, C.S.: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 62, 1251–1268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodrich, C.S.: Positive solutions to boundary value problems with nonlinear boundary conditions. Nonlinear Anal. 75, 417–432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goodrich, C.S.: On nonlocal BVPs with boundary conditions with asymptotically sublinear or superlinear growth. Math. Nachr. 285, 1404–1421 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Goodrich, C.S.: On nonlinear boundary conditions satisfying certain asymptotic behavior. Nonlinear Anal. 76, 58–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goodrich, C.S.: A note on semipositone boundary value problems with nonlocal, nonlinear boundary conditions. Arch. Math. (Basel) 103, 177–187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goodrich, C.S.: Semipositone boundary value problems with nonlocal, nonlinear boundary conditions. Adv. Differ. Equ. 20, 117–142 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Goodrich, C.S.: On nonlinear boundary conditions involving decomposable linear functionals. Proc. Edinb. Math. Soc. 58(2), 421–439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goodrich, C.S.: A note on perturbed Hammerstein equations with applications to nonlocal boundary value problems. Analysis (Berlin). doi:10.1515/anly-2015-0030

  18. Graef, J., Kong, L., Wang, H.: A periodic boundary value problem with vanishing Green’s function. Appl. Math. Lett. 21, 176–180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graef, J., Webb, J.R.L.: Third order boundary value problems with nonlocal boundary conditions. Nonlinear Anal. 71, 1542–1551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Graef, J., Kong, L., Wang, M.: Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 17, 499–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. Academic Press, Boston (1988)

    MATH  Google Scholar 

  22. Infante, G.: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12, 279–288 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Infante, G., Pietramala, P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. Nonlinear Anal. 71, 1301–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Infante, G., Minhós, F., Pietramala, P.: Non-negative solutions of systems of ODEs with coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17, 4952–4960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Infante, G., Pietramala, P.: Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions. Math. Methods Appl. Sci. 37, 2080–2090 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Infante, G., Pietramala, P., Tenuta, M.: Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory. Commun. Nonlinear Sci. Numer. Simul. 19, 2245–2251 (2014)

    Article  MathSciNet  Google Scholar 

  27. Infante, G., Maciejewski, M.: Multiple positive solutions of parabolic systems with nonlinear, nonlocal initial conditions (2016)

  28. Jankowski, T.: Positive solutions to fractional differential equations involving Stieltjes integral conditions. Appl. Math. Comput. 241, 200–213 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Jia, Y., Zhang, X.: Positive solutions for a class of fractional differential equation multi-point boundary value problems with changing sign nonlinearity. J. Appl. Math. Comput. 47, 15–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, D., Yuan, C.: The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Anal. 72, 710–719 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karakostas, G.L., Tsamatos, PCh.: Existence of multiple positive solutions for a nonlocal boundary value problem. Topol. Methods Nonlinear Anal. 19, 109–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Karakostas, G.L., Tsamatos, PCh.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differ. Equ. 17, Article 30 (2002)

  33. Karakostas, G.L.: Existence of solutions for an n-dimensional operator equation and applications to BVPs. Electron. J. Differ. Equ. 17, Article 71 (2014)

  34. Karaca, I., Yilmaz, O.: Fourth-order \(m\)-point boundary value problems on time scales. Dyn. Syst. Appl. 19, 249–269 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Lan, K.Q.: Multiple positive solutions of semilinear differential equations with singularities. J. Lond. Math. Soc. 63(2), 690–704 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lan, K.Q., Lin, W.: Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations. J. Lond. Math. Soc. 83(2), 449–469 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. H. Li, L. Wang, M. Pei, Solvability of a fourth-order boundary value problem with integral boundary conditions, J. Appl. Math. Art. ID 782363, 7 (2013)

  38. Liu, X., Wu, J.: Positive solutions for a Hammerstein integral equation with a parameter. Appl. Math. Lett. 22, 490–494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, Y., Zhang, W., Liu, X.: A sufficient condition for the existence of a positive solution to a nonlinear fractional differential equation with the Riemann-Liouville derivative. Appl. Math. Lett. 25, 1986–1992 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, R., Zhong, C.: Existence of positive solutions for integral equations with vanishing kernels. Commun. Appl. Anal. 15, 529–538 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for Langevin fractional differential inclusions with Riemann–Liouville fractional integral boundary conditions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22, 123–141 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Picone, M.: Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10, 1–95 (1908)

    MathSciNet  MATH  Google Scholar 

  43. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  44. Wang, H.: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281, 287–306 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Webb, J.R.L.: Boundary value problems with vanishing Green’s function. Commun. Appl. Anal. 13, 587–595 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Webb, J.R.L.: Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 82(2), 420–436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Webb, J.R.L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74(2), 673–693 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Webb, J.R.L., Zima, M.: Multiple positive solutions of resonant and non-resonant non-local fourth-order boundary value problem. Glasg. Math. J. 54, 225–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Whyburn, W.M.: Differential equations with general boundary conditions. Bull. Am. Math. Soc. 48, 692–704 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, J., Wei, Z., Dong, W.: Uniqueness of positive solutions for a class of fractional boundary value problems. Appl. Math. Lett. 25, 590–593 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, J., Yang, Z.: Positive solutions for a system of nonlinear Hammerstein integral equations and applications. J. Integral Equ. Appl. 24, 131–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yang, B.: Positive solutions to a boundary value problem for the beam equation. Z. Anal. Anwend. 26, 221–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, Z.: Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Anal. 62, 1251–1265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, Z.: Positive solutions of a second-order integral boundary value problem. J. Math. Anal. Appl. 321, 751–765 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, Z.: Existence and nonexistence results for positive solutions of an integral boundary value problem. Nonlinear Anal. 65, 1489–1511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang, Z.: Existence of nontrivial solutions for a nonlinear Sturm–Liouville problem with integral boundary conditions. Nonlinear Anal. 68, 216–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, Z.: Positive solutions for a system of nonlinear Hammerstein integral equations and applications. Appl. Math. Comput. 218, 11138–11150 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems. Springer, New York (1986)

    Book  MATH  Google Scholar 

  59. Zhang, S.: Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 59, 1300–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhao, Z.: Positive solutions of semi-positone Hammerstein integral equations and applications. Appl. Math. Comput. 219, 2789–2797 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Zhou, Y., Zhang, X.: Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions. Bound. Value Probl. 14, Article 2 (2015)

Download references

Acknowledgments

The author would like to thank the anonymous referee for his or her helpful suggestions and, in particular, pointing out references [18, 40, 45] and their relation to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Goodrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodrich, C.S. Coercive nonlocal elements in fractional differential equations. Positivity 21, 377–394 (2017). https://doi.org/10.1007/s11117-016-0427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-016-0427-z

Keywords

Mathematics Subject Classification

Navigation