Skip to main content
Log in

Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper we use variational methods and fixed point theorems to study the existence of solutions to a boundary value problem for impulsive differential equations with nonlinear dependence on the derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  3. De Figueiredo, D., Girardi, M., Matzeu, M.: Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques. Differ. Integr. Equ. 17(1–2), 119–126 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Han, J., Zeng, H.: Variational analysis and optimal control of dynamic unilateral contact models with friction. J. Math. Anal. Appl. 473(2), 712–748 (2019)

    Article  MathSciNet  Google Scholar 

  5. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989)

    Book  Google Scholar 

  6. Li, S., Tang, X., Luo, H.: Impulsive periodic solutions for a singular damped differential equation via variational methods. J. Comput. Anal. Appl. 24(5), 848–858 (2018)

    MathSciNet  Google Scholar 

  7. Liu, J., Zhao, Z., Zhang, T.: Multiple solutions to damped Hamiltonian systems with impulsive effects. Appl. Math. Lett. 91, 173–180 (2019)

    Article  MathSciNet  Google Scholar 

  8. Matzeu, M., Servadei, R.: Semilinear elliptic variational inequalities with dependence on the gradient via mountain pass techniques. Nonlinear Anal. Theory Methods Appl. 72(11), 4347–4359 (2010)

    Article  MathSciNet  Google Scholar 

  9. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, volume 74 of Applied Mathematical Sciences. Springer, New York (1989)

    Book  Google Scholar 

  10. Migórski, Sa, Gamorski, P.: Variational-hemivariational inequality for a class of dynamic nonsmooth frictional contact problems. Appl. Math. Comput. 346, 465–479 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Nieto, J.J.: Variational formulation of a damped Dirichlet impulsive problem. Appl. Math. Lett. 23(8), 940–942 (2010)

    Article  MathSciNet  Google Scholar 

  12. Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10(2), 680–690 (2009)

    Article  MathSciNet  Google Scholar 

  13. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations, volume 14 of World Scientific Series on Nonlinear Science. World Scientific Publishing Co. Inc, River Edge (1995)

    Google Scholar 

  14. Shen, J., Wang, W.: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal. Theory Methods Appl. 69(11), 4055–4062 (2008)

    Article  MathSciNet  Google Scholar 

  15. Smart, D.R.: Fixed Point Theorems. Cambridge University Press, London (1974). (Cambridge Tracts in Mathematics, No. 66)

    MATH  Google Scholar 

  16. Stamova, I., Stamov, G.: Applied Impulsive Mathematical Models. CMS Books in Mathematics. Springer International Publishing, New York (2016)

    MATH  Google Scholar 

  17. Sun, J., Chu, J., Chen, H.: Periodic solution generated by impulses for singular differential equations. J. Math. Anal. Appl. 404(2), 562–569 (2013)

    Article  MathSciNet  Google Scholar 

  18. Teng, K., Zhang, C.: Existence of solution to boundary value problem for impulsive differential equations. Nonlinear Anal. Real World Appl. 11(5), 4431–4441 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tian, Y., Ge, W.: Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods. J. Math. Anal. Appl. 387(2), 475–489 (2012)

    Article  MathSciNet  Google Scholar 

  20. Xiao, J., Nieto, J.J.: Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J. Franklin Inst. 348(2), 369–377 (2011)

    Article  MathSciNet  Google Scholar 

  21. Zhang, X., Feng, M.: Transformation techniques and fixed point theories to establish the positive solutions of second order impulsive differential equations. J. Comput. Appl. Math. 271, 117–129 (2014)

    Article  MathSciNet  Google Scholar 

  22. Zhou, J., Li, Y.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. Theory Methods Appl. 71(7–8), 2856–2865 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author has been partially supported by project MTM2016-75140-P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Nieto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 4.1

Appendix A: Proof of Lemma 4.1

We prove first that S is continuous.Let \(\{w_n\}_{n\in {\mathbb {N}}}\) a sequence on \(H_0^1(0,T)\), \(w_n\longrightarrow w\). Denote \(u_n=S(w_n)\) for all \(n\in {\mathbb {N}}\). Take an arbitrary subsequence of \(\{u_n\}_{n\in {\mathbb {N}}}\) (for simplicity denoted again by \(\{u_n\}_{n\in {\mathbb {N}}}\)).We know that \(\Vert u_n\Vert \le M\), hence there exists a subsequence \(\{u_{n_k}\}_{k\in {\mathbb {N}}}\) such that \(u_{n_k}\) converges weakly to some \(u\in H_0^1(0,T)\). Then the sequence \(\{u_{n_k}\}_{k\in {\mathbb {N}}}\) converges to u in C([0, T]).Using that \(w_{n_k}\longrightarrow w\) in \(H_0^1(0,T)\), we have that \(w_{n_k}'\longrightarrow w'\) in \(L^2(0,T)\). So there exists a subsequence \(\{w_{n_{k_l}}\}_{l\in {\mathbb {N}}}\) such that

$$\begin{aligned} w_{n_{k_l}}'(t)\longrightarrow w'(t)\text { a.e. }t\in [0,T]. \end{aligned}$$

The function f is continuous, so

$$\begin{aligned} f(t,u_{n_{k_l}}(t),w_{n_{k_l}}'(t))\longrightarrow f(t,u(t),w'(t))\text { a.e. }t\in [0,T]. \end{aligned}$$

Furthermore, the functions \(I_j\) are continuous, so

$$\begin{aligned} I_j(u_{n_{k_l}}(t_j))\longrightarrow I_j(u(t_j)). \end{aligned}$$

We will check that \(u_{n_{k_l}}\longrightarrow u\). For any \(v\in H_0^1(0,T)\) and using Lebesgue’s dominated convergence theorem we have

$$\begin{aligned} \begin{array}{ccccccc} (u_{n_{k_l}},v) &{} + &{} \displaystyle \sum _{j=1}^p I_j(u_{n_{k_l}}(t_j))v(t_j) &{} - &{} \displaystyle \int _0^T f(t,u_{n_{k_l}}(t),w_{n_{k_l}}'(t))v(t)\,{\text {d}}t &{} = &{} 0\\ \Big \downarrow &{}&{} \Big \downarrow &{}&{} \Big \downarrow &{}&{} \Big \downarrow \\ (u,v) &{} + &{} \displaystyle \sum _{j=1}^p I_j(u(t_j))v(t_j) &{} - &{} \displaystyle \int _0^T f(t,u(t),w'(t))v(t)\,{\text {d}}t &{} = &{} 0 \end{array} \end{aligned}$$

Then \(Sw=u\) (by uniqueness of the critical point), and we know that the sequence \(u_{n_{k_l}}=Sw_{n_{k_l}}\) converges weakly to Sw.Furthermore, taking \(v=u_{n_{k_l}}\) we get \(\Vert u_{n_{k_l}}\Vert \longrightarrow \Vert u\Vert \). Then we have that \(u_{n_{k_l}}\longrightarrow u\) in \(H_0^1(0,T)\), i.e., \(S_{w_{n_{k_l}}}\longrightarrow Sw\). So any arbitrary subsequence of \(\{u_n\}_{n\in {\mathbb {N}}}\) has a subsequence which converges to Sw. This implies that \(u_n\longrightarrow Sw\).

We prove that S is compact. Let \(\{w_n\}_{n\in {\mathbb {N}}}\) be a bounded sequence in \(H_0^1(0,T)\). We have to prove that \(\{Sw_n\}_{n\in {\mathbb {N}}}\) has a convergent subsequence. Fix \(j\in \{0,\ldots ,p\}\) and take \(v\in H_0^1(0,T)\) with \(v(t)=0\quad \forall \,t\notin (t_j,t_{j+1})\). The functions \(Sw_n\) are a weak solution of (1.2) with \(w=w_n\), so

$$\begin{aligned} \int _{t_j}^{t_{j+1}} (Sw_n)'(t)v'(t)+ a(t)(Sw_n)(t)v(t)\,{\text {d}}t - \int _{t_j}^{t_{j+1}} f(t,Sw_n(t),w_n'(t))v(t)\,{\text {d}}t. \end{aligned}$$

is equal to 0. Then we can say that

$$\begin{aligned} \int _{t_j}^{t_{j+1}} (Sw_n)'(t)v'(t) = \int _{t_j}^{t_{j+1}} [f(t,Sw_n(t),w_n'(t))-a(t)(Sw_n)(t)]v(t)\,{\text {d}}t = 0. \end{aligned}$$

So there exists \((Sw_n)''\in L^2(t_j,t_{j+1})\), which implies \(Sw_n\in H^2(t_j,t_{j+1})\).We will check that \(Sw_n\) is a bounded sequence in \(H^2(t_j,t_{j+1})\).

$$\begin{aligned}&{\Vert Sw_n\Vert _{H^2}}^2={\Vert Sw_n\Vert _{H^1}}^2+{\Vert (Sw_n)''\Vert _{L^2}}^2 \\&\quad \le M^2 + \int _{t_j}^{t_{j+1}} (a(t)Sw_n(t)-f(t,Sw_n(t),w_n'(t)))^2\,{\text {d}}t \\&\quad \le M^2 + \int _{t_j}^{t_{j+1}} (a(t)Sw_n(t))^2\,{\text {d}}t + \int _{t_j}^{t_{j+1}} (f(t,Sw_n(t),w_n'(t)))^2\,{\text {d}}t \\&\qquad + 2 \int _{t_j}^{t_{j+1}} |a(t) f(t,Sw_n(t),w_n'(t)) Sw_n(t)|\,{\text {d}}t \\&\quad \le M^2 + {M_1}^2 + \int _{t_j}^{t_{j+1}} (\mu (|Sw_n(t)|)\beta (t))^2\,{\text {d}}t \\&\qquad + 2\int _{t_j}^{t_{j+1}} |a(t)|\mu (|Sw_n(t)|)\beta (t)|Sw_n(t)|\,{\text {d}}t. \end{aligned}$$

We know that \(\Vert Sw_n\Vert _\infty \le c\Vert Sw_n\Vert \le cM\). Take

$$\begin{aligned} M_2=\max \{\mu (s):s\in [0,cM]\}. \end{aligned}$$

Then we have that

$$\begin{aligned} {\Vert Sw_n\Vert _{H^2}}^2&\le \cdots \le M^2+{M_1}^2 + \int _{t_j}^{t_{j+1}} (M_2 \beta (t))^2\,{\text {d}}t \\&\quad +2\int _{t_j}^{t_{j+1}} |a(t)|M_2cM\beta (t)\,{\text {d}}t<K \end{aligned}$$

and \(K<\infty \). Then \(Sw_n\) is a bounded sequence in \(H^2(t_j,t_{j+1})\).Next we use a diagonal argument.For \(j=0\), \(Sw_n\) is a bounded sequence in \(H^2(0,t_1)\), so there exists a subsequence \(Sw_{n_{k_0}}\) weakly convergent. Let \(u^0\) be its limit. Furthermore, the inclusion \(H^2(0,t_1)\subset H^1(0,t_1)\) is compact, so \(Sw_{n_{k_0}}\longrightarrow u^0\) in \(H^1(0,t_1)\).For \(j=1\), \(Sw_{n_{k_0}}\) is a bounded sequence in \(H^2(t_1,t_2)\), so there exists a subsequence \(Sw_{n_{k_1}}\) weakly convergent. Let \(u^1\) be its limit. The inclusion \(H^2(t_1,t_2)\subset H^1(t_1,t_2)\) is compact, so \(Sw_{n_{k_1}}\longrightarrow u^1\) in \(H^1(t_1,t_2)\).Using this argument for \(j=2,\ldots ,p\) we construct a subsequence \(Sw_{n_k}\) such that

$$\begin{aligned} {Sw_{n_k}}|_{(t_j,t_{j+1})}\longrightarrow u^j \text { in } H^1(t_j,t_{j+1})\subset {\mathcal {C}}([t_j,t_{j+1}]). \end{aligned}$$

We define the function u as follows:

$$\begin{aligned} u(t)={\left\{ \begin{array}{ll} u^0(t),&{} t\in [0,t_1]\\ u^1(t),&{} t\in (t_1,t_2]\\ \cdots \\ u^p(t),&{} t\in (t_p,T]. \end{array}\right. } \end{aligned}$$

Furthermore,

$$\begin{aligned} (u^j)'\in H^2(t_j,t_{j+1})\subset {\mathcal {C}}^1([t_j,t_{j+1}]), \end{aligned}$$

so there exist \((u^j)'(t_j^+)\) and \(Sw_{n_k}|_{(t_j,t_{j+1})}\) converges weakly to \(u^j\) in \(H^2(t_j,t_{j+1})\). This implies that \(Sw_{n_k}|_{(t_j,t_{j+1})}\longrightarrow u^j\) in \({\mathcal {C}}^1([t_j,t_{j+1}])\), so

$$\begin{aligned} (u^j)'(t_j^+)=\lim \limits _{k\rightarrow \infty } (Sw_{n_k})'(t_j^+),\qquad (u^j)'(t_j^-)=\lim \limits _{k\rightarrow \infty } (Sw_{n_k})'(t_j^-). \end{aligned}$$

As a consequence, \(\Delta u'(t_j)=I_j(u(t_j))\).Finally, \(Sw_{n_k}\longrightarrow u\) in \(H^1(0,T)\), and finally \(u(0)=u(T)\), so \(Sw_{n_k}\longrightarrow u\) in \(H_0^1(0,T)\).

This implies that \(\{Sw_n\}_{n\in {\mathbb {N}}}\) has a convergent subsequence, so S is compact.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieto, J.J., Uzal, J.M. Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure. J. Fixed Point Theory Appl. 22, 19 (2020). https://doi.org/10.1007/s11784-019-0754-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-019-0754-3

Keywords

Mathematics Subject Classification

Navigation