Skip to main content
Log in

Isotonicity of the metric projection with applications to variational inequalities and fixed point theory in Banach spaces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we discuss isotonicity characterizations of the metric projection operator, including its necessary and sufficient conditions for isotonicity onto sublattices in Banach spaces. Then, we demonstrate their applications to variational inequalities and fixed point theory in Banach spaces. Our work generalizes many existing results obtained in earlier work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, K.: A generalization of Tychonoffs fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  Google Scholar 

  2. Isac, G.: Complementarity Problems. Lecture Notes in Mathematics. Springer, Berlin (1992)

    Book  Google Scholar 

  3. Fang, C., Wang, Y., Yang, S.: Two algorithms for solving single-valued variational inequalities and fixed point problems. J. Fixed Point Theory Appl. 18, 27–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Isac, G., Li, J.: Complementarity problems, Karamardian’s condition and a generalization of Harker–Pang condition. Nonlinear Anal. 6, 383–390 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Isac, G., Sehgal, V.M., Singh, S.P.: An alternate version of a variational inequality. Indian J. Math. 41, 25–31 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Li, J.: On the existence of solutions of variational inequalities in Banach spaces. J. Math. Anal. Appl. 295, 115–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, L.: Approximation theorems and fixed point theorems for various classes of 1-set-contractive mappings in Banach spaces. Acta Math. Sin. English Ser. 17, 103–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Isac, G., Németh, A.B.: Projection methods, isotone projection cones, and the complementarity problem. J. Math. Anal. Appl. 153, 258–275 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abbas, M., N émeth, S.Z.: Finding solutions of implicit complementarity problems by isotonicity of the metric projection. Nonlinear Anal. 75, 2349–2361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Isac, G., Németh, A.B.: Isotone projection cones in Hilbert spaces and the complementarity problem. Boll. Unione Mat. Ital. Sez. B 7, 773–802 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Abbas, M., Németh, S.Z.: Solving nonlinear complementarity problems by isotonicity of the metric projection. J. Math. Anal. Appl. 386, 882–893 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Isac, G.: On the order monotonicity of the metric projection operator. In: Singh, S.P. (ed.) Approximation theory, Wavelets and Applications. Kluwer, Dordrecht (1995)

    Google Scholar 

  14. Isac, G., Németh, A.B.: Isotone projection cones in Eucliden spaces. Ann. Sci. Math. Québec 16, 35–52 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Isac, G., Németh, A.B.: Every generating isotone projection cone is latticial and correct. J. Math. Anal. Appl. 147, 53–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Németh, S.Z., Zhang, G.H.: Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl. 168, 756–768 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Németh, A.B., Németh, S.Z.: A duality between the metric projection onto a cone and the metric projection onto its dual. J. Math. Anal. Appl. 392, 172–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Németh, A.B., Németh, S.Z.: How to project onto an isotone projection cone. Linear Algebra Appl. 433, 41–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Németh, A.B., Németh, S.Z.: Lattice-like operations and isotone projection sets. Linear Algebra Appl. 439, 2815–2828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nishimura, H., Ok, E.A.: Solvability of variational inequalities on Hilbert lattices. Math. Oper. Res. 37, 608–625 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, J., Ok, E.A.: Optimal solutions to variational inequalities on Banach lattices. J. Math. Anal. Appl. 388, 1157–1165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Németh, S.Z.: A duality between the metric projection onto a convex cone and the metric projection onto its dual in Hilbert spaces. Nonlinear Anal. 97, 1–3 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)

    MATH  Google Scholar 

  24. Guo, D., Cho, Y., Zhu, J.: Partial Ordering Methods in Nonlinear problems. Nova Science Publishers, Inc., New York (2004)

    MATH  Google Scholar 

  25. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  26. Liu, L.: On approximation theorems and fixed point theorems for non-self-mapping in infinite dimensional Banach spaces. J. Math. Anal. Appl. 188, 541–551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, L., Li, X.: On approximation theorems and fixed point theorems for non-self-mappings in uniformly convex Banach spaces. Banyan Math. J. 4, 11–20 (1997)

    Google Scholar 

  28. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Romania International Publishers, Bucuresti (1978)

    MATH  Google Scholar 

  29. Kong, D., Liu, L., Wu, Y.: Best approximation theorems and fixed point theorems for discontinuous increasing mappings in Banach spaces. Abstr. Appl. Anal. 2015 (2015), 7 (Article ID 165053)

  30. Lindenstrauss, J., Tzafriry, L.: Classical Banach Spaces II. Springer, Berlin (1979)

    Book  Google Scholar 

  31. Deutsch, F.R., Maserick, P.H.: Applications of the Hahn–Banach theorem in approximation theory. SIAM Rev. 9, 516–530 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, L., Kong, D., Wu, Y.: The best approximation theorems and variational inequalities for discontinuous mappings in Banach spaces. Sci. China Math. 58(12), 2581–2592 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, J., Xie, L., Yang, W.: On the representations of the metric projection to one-dimensional subspaces of Banach spaces. Nonlinear Anal. 71, 3283–3291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Alber, Y.I.: Decomposition theorem in Banach spaces. Field Inst. Commun. 25, 77–93 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Song, W., Cao, Z.: The generalized decomposition theorem in Banach spaces and its applications. J. Approx. Theory 129, 167–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kong, D., Liu, L., Wu, Y.: Best approximation and fixed point theorems for discontinuous increasing maps in Banach lattices. Fixed Point Theory Appl. 18 (2014). doi:10.1186/1687-1812-2014-18

Download references

Acknowledgments

The authors were financially supported by the National Natural Science Foundation of China (11371221, 11571296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lishan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Liu, L. & Wu, Y. Isotonicity of the metric projection with applications to variational inequalities and fixed point theory in Banach spaces. J. Fixed Point Theory Appl. 19, 1889–1903 (2017). https://doi.org/10.1007/s11784-016-0337-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0337-5

Keywords

Mathematics Subject Classification

Navigation