Skip to main content
Log in

Approximating topological approach to the existence of attractors in fluid mechanics

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The aim of this paper is to demonstrate how the approximating topological method can be effectively combined with the theory of attractors of trajectory spaces in problems of fluid mechanics. First we give an exposition of the theory. Then we consider the model of motion of weak aqueous polymer solutions and prove that it has the minimal trajectory attractor and the global one. Finally we prove that the attractors of approximating problem converge to the attractors of the unperturbed one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Amfilokhiev et al., Flows of polymer solutions with convective accelerations. In: Proceedings of Leningrad Shipbuilding Institute, vol. 96, 1975, 3–9 (in Russian).

  2. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations. Stud. Math. Appl. 25, North–Holland, Amsterdam, 1992.

  3. Babin A.V., Vishik M.I.: Attractors of partial differential evolution equations and estimates of their dimension. Russ. Math. Surv. 38, 151–213 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babin A.V., Vishik M.I.: Regular attractors of semigroups and evolution equations. J. Math. Pures Appl. 62(9), 441–491 (1983)

    MathSciNet  MATH  Google Scholar 

  5. A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. Appl. Math. Sci. 182. Springer, New York, 2012.

  6. V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics. Amer. Math. Soc. Colloq. Publ. 49, Amer. Math. Soc., Providence, RI, 2002.

  7. Chepyzhov V.V., Vishik M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76(9), 913–964 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Chepyzhov V.V., Vishik M.I.: Trajectory attractors for evolution equations. C. R. Math. Acad. Sci. Paris 321, 1309–1314 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Foias C., Manley O., Rosa R., Temam R.: Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications 83. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  10. A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications. Trans. Math. Monographs 187, Amer. Math. Soc., Providence, RI, 2000.

  11. O. A. Ladyzhenskaya, On a dynamical system generated by Navier–Stokes equations. In: Boundary-Value Problems of Mathematical Physics and Related Problems of Function Theory, Part 6, Zap. Nauchn. Sem. LOMI 27, “Nauka”, Leningrad. Otdel., Leningrad, 1972, 91–115 (in Russian).

  12. Ladyzhenskaya O.A.: On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations. Russ. Math. Surv. 42, 27–73 (1987)

    Article  MATH  Google Scholar 

  13. V. A. Pavlovsky, To a problem on theoretical exposition of weak aqueous solutions of polymers. Dokl. Akad. Nauk SSSR 200 (1971), 809–812 (in Russian).

  14. Sell G.: Global attractors for the three-dimensional Navier-Stokes equations. J. Dynam. Differrential Equations 8, 1–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Sell and Y. You, Dynamics of Evolutionary Equations. Springer, New York, 1998.

  16. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988.

  17. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. AMS Chelsea, Providence, 2000.

  18. Vishik M.I., Chepyzhov V.V.: Trajectory and Global Attractors of Three-Dimensional Navier–Stokes Systems. Math. Notes 71, 177–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vishik M.I., Chepyzhov V.V.: Trajectory attractors of equations of mathematical physics. Russ. Math. Surv. 66, 637–731 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vorotnikov D.A., Zvyagin V.G.: On the trajectory and global attractors for the equations of motion of a visco-elastic medium. Russ. Math. Surv. 61, 368–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vorotnikov D.A., Zvyagin V.G.: Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium. J. Math. Fluid Mech. 10, 19–44 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vorotnikov D.A., Zvyagin V.G.: Uniform attractors for non-automous motion equations of viscoelastic medium. J. Math. Anal. Appl. 325, 438–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. V. G. Zvyagin and V. T. Dmitrienko, Approximating-topological approach to investigation of problems of hydrodynamics. Navier–Stokes system. Editorial URSS, Moscow, 2004 (in Russian).

  24. V. G. Zvyagin and S. K. Kondratyev, Attractors for Equations of Motions of Viscoelastic Media. Voronezh, Voronezh State University Publishing House, 2010 (in Russian).

  25. Zvyagin V.G., Kondrat’ev S.K.: Attractors of weak solutions to a regularized system of motion equations for fluids with memory. Russian Mathematics 55, 75–77 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. V. G. Zvyagin and S. K. Kondratyev, Attractors of weak solutions of a regularized system of motions for fluids with memory. Sb. Math. 11 (2012), 83–104 (in Russian).

    Google Scholar 

  27. V. G. Zvyagin and M. V. Turbin, Mathematical Problems of Hydrodynamics of Viscoelastic Media. KRASAND, Moscow, 2012 (in Russian).

  28. Zvyagin V.G., Turbin M.V.: The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids. J. Math. Sci. 168, 157–308 (2010)

    Article  MathSciNet  Google Scholar 

  29. Zvyagin V.G., Vorotnikov D.A.: Approximating-topological methods in some problems of hydrodynamics. J. Fixed Point Theory Appl. 3, 23–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. V. G. Zvyagin and D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics. Walter de Gruyter, Berlin, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Zvyagin.

Additional information

To two outstanding mathematicians, Bogdan Bojarski and Kazimierz Gęba

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvyagin, V.G., Kondratyev, S.K. Approximating topological approach to the existence of attractors in fluid mechanics. J. Fixed Point Theory Appl. 13, 359–395 (2013). https://doi.org/10.1007/s11784-013-0122-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-013-0122-7

Mathematics Subject Classification

Keywords

Navigation